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Chapter 1

Group theory in solid state physics

1.1 Introduction

Group theory finds its applications in many fields, ranging from nuclear physics, where
even new particles can be predicted using the techniques of this theory to more society-
oriented subjects like architecture. In solid state physics, group theory can find its
use where the calculations of the studied systems are too complicated or too time
consuming. Other cases involve considerations of theoretical models in which the values
of the parameters are not well established. In that case still a lot of information can
be obtained using purely group theoretical calculations. For instance, the degeneracy
of levels of electrons in a semiconductor can be calculated, even if only the symmetry
of the Hamiltonian is known. To show how this is achieved, first a brief introduction
into the mathematics of group theory and then its application to the field of solid state
physics.

1.2 Definition of a group

A group is a set of operations that satisfy the following rules:
1. It is closed; the ”product” of two elements is also a member of the group:

VA,Be G: ABecG. (1.1)

NB: the product is not yet defined and can have many forms (like matrix multi-

plication).
2. There exists in the group a unity element F, such that

VA€ G:EA=AE = A. (1.2)
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my

Figure 1.1: An example of (5, symmetry.

3. Of every element of the group there is also an inverse:

VA€ G:3A € G,AA' = E. (1.3)

4. The associative law holds:

VA,B,C € G : A(BC) = (AB)C. (1.4)

As a special case, Abelian groups are those in which the elements follow the rule
VA,B € G: AB = BA. (1.5)

Alternatively, a group can be seen as a set of operations that leave a specific object
invariant. An equilateral triangle is invariant under unity (of course), rotations of
+120° and —120°, around an axis through its centre, perpendicular to the plane of
the triangle, and reflections in lines bisecting the angles of the triangle (see Figure
1.1). Thus the elements of the associated group (C3,) are: E, Ri30, R_120, M1, M2, m3.
Or, in a more compact notation: F, 2C3, 30. The names of the elements follow the
standard Schoenflies notation, see Table 1.1. The name of the group is a direct result
of the symmetry operations contained within the group, see Tables 1.2 and 1.3 and
Figures 1.2a and 1.2b. In Figure 1.2a a mark is placed at a general point on a unit
sphere which is then subjected to all the various symmetry operations of the group.
If the point is above the projection plane the symbol + is used, for points below the
plane a () is used. The rotation axes are indicated by characteristic symbols. A
solid circumference indicates a horizontal mirror plane, a dashed one means a vertical

mirroplane, perpendicular to the plane of paper, and a solid line means a D, (see Table

1.2) axis.
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Table 1.1: Schoenflies notation for point group elements.

E | Identity. (Always present in the group)

C.,. | Rotation over 27/n (in crystals n € {1,2,3,4,6}).

on | Reflection in a horizontal plane with respect to principal axis.

o, | Reflection in a vertical plane.

o4 | Reflection in a diagonal plane.

i Coordinate inversion or parity operator (z——z, y——y, z——2).

S, | Improper rotation over 27 /n (a rotation C, followed by coordinate

inversion 7). (S} =1, Sy = 0).
Table 1.2: Simple point group names.

C, | These groups consist of £ and a n-fold rotation C,.

C., | In addition to the elements of C,, C,, also contains a o,
reflection plane.

Cun | Cn plus a oy, reflection.

S, | E and a n-fold improper rotation.

D,, | These groups have n twofold axes perpendicular to the principal
C, axis and E.

D,q | Together with the element of D,,, these groups contain diagonal
reflection planes oy.

D, | Identical to D,4, but with horizontal reflection planes o}, instead.

Table 1.3: Point groups of higher symmetry.

T | Contains all 12 proper rotations which take a regular tetrahedron
into itself.

T, | The full tetrahedral group contains all operations which leave

a regular tetrahedron invariant (24 elements). For example CHy4 or
the silicon lattice (with respect to lattice sites).

T, | Direct product group of T with the inversion, T, = T ® i (24 elements).
O | All the proper rotations which take a cube or octahedron
into itself (24 elements).

Oy, | Direct product of O and i ),=0 ® i (48 elements).
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Figure 1.2: a: (previous page) simple point groups. b: point groups of higher symmetry
O and T.

A direct product group Gg = G; ® G, is constructed by taking all combinations of

the individual groups:

g1 € G1,92 € G2 = g192 € Gg. (1.6)

1.3 Representations

A representation of a group is a set of mathematical entities with a function like
(homomorphic) relation to the group. As an example some representations of the

group Cj, are

e Matrix representation in 2-dimensional space:

b (10), mmmd( s ). w3 0.

(3 8), meeb (). ()

e (Wave)functions. Any set of functions (f,;) which is invariant under coordinate

transformations defined by the matrices above is a representation.

Vge G fg(g_lf) = f,(Z). (1.7)
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e Permutations. An example of a permutation representation is

E  =(1,2,3)—(1,2,3),
R120 = (17253) - (273a 1)7
R_130 = (172’3) - (3:172)7
mi =(1,2,3) - (1,3,2),
mo =(1,2,3) — (3,2,1),
m3 =(1,2,3) — (2,1,3).

This can be made clear by regarding the permutations of the corners of the
triangle; for example R;4 projects corner 1 on corner 2, corner 2 on corner 3 and
corner 3 on corner 1 (see Figure 1.1). Thus Ry = (1,2,3) — (2,3,1).

1.4 Characters and character tables

The character x of a group element g of a representation is defined as the trace of the

accompanying matrix R;:

x(g) = Tr R,. (18)

The set of characters of all elements belonging to the same representation (rep) is called

the character vector of the rep. Some remarks on this:

e x(E) = dim(R): the character of the unity element is equal to the dimension of

the representation.

e x(AB) = x(A)x(B): The character of the product of two reps is the product of

the characters of the individual reps.

An example of the characters of the two- and three-dimensional matrix representations
(M2 and M3) and the permutation representation (P) of the group (', are given in
Table 1.4 and in short notation, using Schoenflies convention, in Table 1.5. Here the
identical columns of the table are condensed in a single ”class”. The multiplicity of
the class is indicated in the label (e.g. 30,). Finding the character vector for a matrix
representation is straightforward, although not unique; it depends on the dimension of
the matrices as can be seen directly in the character of /. The other characters also
depend on the dimension of the matrices. Compare the two-dimensional (M2) with the
three-dimensional matrix representation (M3) in Table 1.4. Finding the characters for

other representations will prove to be more difficult. A simple method is the following:
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Table 1.4: Character vectors of some representations of Cs,.

Cs | E Rio R_130 miy mp mg
Xomm | 2 2 2 0 0 0
Xas | 3 -2 2 1 1 1
XP 3 0 0 1 1 1

Table 1.5: Character vectors of reps of Cs,.

C3U E 203 3Uv
M, | 2 -2 0
Ms | 3 -2 1
P 3 0 1

Expand the representation to a pseudo matrix rep. The permutation rep can for

instance be written as

1 00 0 01 010
E = 0 1 0 5 ngo - 1 0 0 , R_120 - O 0 1 )
0 01 010 1 00

1 00 0 01 010
m=100T1], m=]1010], mg=]100
010 100 0 0 1

Now the trace can be taken, resulting in the character vector above. An example of

matrix expansion for wave functions will be given in a next section.

1.5 Reduction of representations

Representations are often reducible which means that they can be written as a linear

combination of other (non reducible) representations (reps):

I' = ZaiFi. (19)

Representations which are not reducible are said to be irreducible. In character tables
the character vectors of the irreducible reps (irreps) of a group are tabulated. See for

example Table 1.6 The names of the irreps indicate the dimension of these reps:

A or B for one-dimensional,
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Table 1.6: Character table for Cs,.

Csy | £ 2C5 3C,
A |1 1 1
Ay |1 1 -1
E 2 -1 0

E for two-dimensional,

T for three-dimensional.

Often used subscripts are g and u, which indicate an even (gerade) and an odd (unge-

rade) representation under inversion (if inversion is present in the group):

Ay By x(v) =1, (1.10)
Ay, By, x(1) = —1. (1.11)

To distinguish between them, different reps with the same name get an index (e.g., Ay).

The character tables have some special features caused by the orthogonality theorems:

1. Columns of character tables are orthogonal:

_J 0, Ri#Ry,
XF:XP(R])XF(R2) - { Ngroup/NclaSS7 Rl — R2. (1'12)

where the sum is taken over all irreps and R; and R, are two group elements.

2. Rows of a character table are orthonormal (i.e. irreps are orthogonal):

St (B, () ={ & p 0 (113)

where the sum is taken over all group elements, I'y and T'; are two group elements

and n(R) is the multiplicity factor of R (the number of times R appears in the
group).

A general representation I' does not have the orthogonality property and the orthogo-
nality theorems provide a way to decompose it. A reducible rep can always be written
as a linear combination of irreps, i.e., I' takes the form of equation 1.9. Decomposing
[ consists of finding the coefficients «;. According to theorem 2 and Equation 1.9 the
"inproduct” of I' with I'; is

; Xe (R)xp, (R) = @i ) n(R)xy, (R)x;

R

(R), (1.14)

1
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and because the sum in the right hand side of the equation can be calculated from the
character table, ; is easily found.

A different way of finding the coeflicients is solving the set of equations

xr(R1) = a1 Xr, (R1)+ azXF2(R1) +-- anX[‘n(Rl)
' (1.15)
Xr (Rn) = Q1 Xrp, (Rﬂ)+ a2X[‘2(Rn) +o ot aan*n(Rn)'

This consists of calculating the "inverse” of the character table and multiplying it by
the known character vector xr(Ri)--- xr(R,), giving the coeflicients a; ---a,. The
advantage of this scheme is that less information of the group needs to be known; the
multiplicity factors n(R) are not necessary for the calculation and not always are they
tabulated in the group tables. Moreover, because the coefficients are often simple (like
zeros and ones) they are directly visible.
If one of the resulting coefficients is not a integer positive number then the represen-
tation is non-reducible, otherwise it is reducible.

Take, for example, the group C3, again. Assume there is a representation with a

character vector

Caso | E 205 30,
X |3 0 -1

Clearly T must be equal to A, + E. This can be proven by first calculating the inverse
table which gives:

1 2 3
1 2 -3
2 =2 0

1

Multiplying this by the character vector of I' gives the coefficients vector a:

1 2 3 3 0
a==-|1 2 =3 0o | =11
6o _2 o _1 1

So the starting representation is reducible because the coefficient vector consists of only

positive integers. The I' is thereby reducible to

I'=A+E. (1.16)
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Az A2
Ay
E
Ay
S Gy Cin

Figure 1.3: Degeneracy in various symmetries.

1.6 Wave functions, energies and symmetry

These group-theoretical results can now be used in determining the degeneracy of
energy levels in crystals. The principle of the calculations is that the degeneracy of the
energy levels is determined by the dimensions of the representations. So if for example

a representation of wave function reduces to
'=A,+FE, (1.17)

it implies that there are two energy levels: a singlet (A;) and a doublet (E) (see Figure
1.3). Most often one is interested in the degeneracy of s,p,d ... electrons in crystals
of known symmetry. The determination of the degeneracy consists of calculating the

character vector and then reducing it.

Neglecting the radial dependent parts, which have no effect in this calculation,

orbitals have the form of spherical harmonics:
Y™ = Pllml(cos 0) - e™m?, (1.18)

where P,lml is an associated Legendre polynomial and m has the integral values —I, —[+

1,---,l. The first few spherical harmonics are:
s(l=0) : Y21, (1.19)
p(l=1) : Y x 2, (1.20)
Vi oz 4y,
d(l=2) : Y ox22® — 2% — 42, (1.21)

Y o (z £ 1y)z,
Y2 o (z £ 1y)*.
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These angular dependencies allow for a calculation of the character vectors of the
electrons.
Unity E. The character is always the dimension of the representation, here the number

of functions or the starting degeneracy of the energies, so

Xs(E) =1, xp(E) =3, xua(E) =5, -+ (1.22)
xi(E) =20+ 1.

Rotations C,,. The z-direction of 1.18 is not yet determined and can conveniently be

choosen to lie along the rotation axis. Then
CoY™(0,0) =Y" (0,4 — &) = ™ - Y["(0,4), (1.23)

or in matrix notation (basis ¥;):

e~ He 0 0
0 e -De ..
Co = , : , |- (1.24)
0 0 ezla
Hence the character is
Xi(Ca) = €7 -+ + €, (1.25)

sin((2! + l)w/n).

sin(7/n) (1.26)

xi1(Cr) =

Inversion :. An inversion means in 1.18 substituting § — 7 —6 and ¢ — 7+ ¢, therefore
Pllml(cos 6) — (—1)l+mPlIm|(cos 0) and ¢™* — (—1)me'™®. The result is:

xi(i) = (214 1)(=1)". (1.27)

Reflections o. For the special reflections o4 (z—z, y—y, 2——2), 0,(z——2,y—y, 2—2)

and og4(z—y, y—,z—z) the characters can easily be calculated:

s-electrons. s-Electron wave functions are spherically symmetric (see Equation 1.19),
so, every point group symmetry operation is a covering operation, hence os = s and
Xs = 1.

p-electrons. There are 3 p-electron wave functions; one in every principal cartesian
direction. A horizontal reflection takes p, and p, wave functions into itself and p, into

its negative (see Figure 1.4).

1 0 0
Ohp = 01 0 = Xp(dh) = 1. (128)
0 0 —1
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Figure 1.4: p-orbitals (p;, py, and p, respectively).

For a vertical reflection o, (pg——pz, Py—Dy, P2—Dz):

-1 0 0

Opp = 0 1 0 |=x,(c)=1 (1.29)
0 01

For diagonal reflections o4 (p,—py, Py—Dz, P=—P:):

010
oap=11 0 0| = x(00) =1. (1.30)
00 1

d-electrons. From Equations 1.21 can be seen:

1 0 0 0 O
0 -1 0 0 O
Ohd = 0 0 1 0 0 = Xd(o'h) = 1, (1.31)
0 0 0 -1 0
0 0 0 0 1
0 00 01
00010
opa=1001 0 0 |=x4lo,) =1, (1.32)
01000
1 0000
0 00 0 -1
0 00 O
O4d = 0 010 O = Xd(o'd) =1. (1-33)
0 2 00 O
-1 000 O
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Table 1.7: Characters for electrons.

[ E 1 C, S, o
0 s 1 1 1 1 1
L p 3 -3 Qs n —Q3n 1
2 d| 5 5 Qsm Qs 1
3 f| 7 -7 Q7.n ~Q7n 1
! 2041 (20+1)(-1)" Qauyin (=1)'Qag1n 1

Qmn = sin(mm/n)/ sin(7/n)

From this the characters of reflections of all electrons can be extrapolated to be
xi(o) = 1. (1.34)

Improper rotations. Because improper rotations are rotations followed by a coordinate

inversion the matrices are easily found by simple multiplication of the rotation and the
inversion matrices. With the knowledge that the matrix of inversion is —I, with 1 the

unity matrix, this leads to the result:

X(Sn) = (=1)'x,(Cu). (1.35)

This also proves that an improper rotation is not a reflection after a rotation, but an
inversion after a rotation. Using the former definition (of Tinkham [1]), the calculation
of the character gives a totally different answer. Then the representations would not
have been reducible as it is now. A survey of the characters is given in Table 1.7

As an example electrons in a lattice of cubic (O) symmetry. The group table of O
is given in Table 1.8. The degeneracy of levels for electrons in cubic symmetry can be
calculated and is also given in Table 1.8. From these two tables it can be concluded
that the f septet splits under influence of a cubic crystal field into a singlet and two
triplets

s — Ay, (1.36)
— 1T,

E+ T,

— Ay+ 1T, + Ts.

~ a
1
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Table 1.8: Character table for group O.

O | F 8C5; 3C, 6Cy 6C,
A1 1 1 1 1
Ay |1 1 1 -1 -1
E |2 -1 2 0 0
T3 0 -1 -1 1
7,13 0 -1 1 -1
s |1 1 1 1 1
p |3 0 -1 -1 1
d |5 -1 1 1 -1
fl7 1 1 1 1

Table 1.9: Fzample of two inequivalent electrons.

O | E 8C; 3C, 6C; 6C,

3d | 5 -1 1 1 -1

4d | 5 -1 1 1 -1
3dad | 25 1 1 1 1

1.7 More than one electron

1.7.1 Inequivalent electrons

In the case of inequivalent electrons the character of the representation is found by
simply taking the product of characters of the individual reps. Take for example a 3d
and a 4d electron in a cubic crystal field. The 25-fold degenerate level splits into 3
singlets, 2 doublets and 6 triplets (see also Table 1.9):

see Table 1.9

1.7.2 Equivalent electrons.

Hund’s rules can be used to fill the levels: The state having lowest energy is that one

having
1. maximum total spin (considered in the next section),

2. maximum total orbital momentum consistent with (1),
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Table 1.10: Construction of a two-electron level following Hund’s rules.

d 1 2 3 4 d 6 7 8 9 10 | total

mi ] 2 ] 1] 0]-1]=2]2 1 ]0]-1][-2
ms || 1/2 | 1/2 || 1/2 | 1/2 | 1/2 [-1/2 [-1/2 [-1/2 |-1]2 | -1/2| 1

3. obeyed Pauli’s exclusion principle.

The spin (S) and orbital momentum (L) are then combined into a total angular mo-
mentum (J). J can have all integral or half integral (depending on S) values between
L — S and L + S. The lowest state however is that one having highest J if the shell
is more than half filled and lowest J otherwise. The notation for the total state is
then 25t1 X, with X indicating total L (S, P, D, F, ---). The orbital degeneracy can
then be calculated just as before, only now with the total L. Take for instance two 3d
electrons. According to Hund’s rules they result in a 3Fj,-state. So the levels are just

the same as with a single f-electron:

3 (=F) - Ay + Th + T (1.38)

1.8 Spin

To calculate the degeneracies, the spin of the electrons has been ignored, so far. The
electron-spin will now be introduced in the calculations.

When there is no spin-orbit coupling, then L and S are not mixed (are still good
quantum numbers) and the degeneracies can be calculated independently. When there
is spin-orbit coupling, then strength of the crystal field determines the strategy for the
calculations. The cases of weak and intermediate strong crystal field will be considered

seperately.

1.8.1 Weak crystal field

In the case of a weak crystal field (= 10? cm™?), the spin-orbit coupling (/= 10° cm™!) is
of greater importance than the crystal field. The ground state is described by the total

angular momentum J, as discussed in the previous section. There are two possibilities,
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either J is integral or J is half integral. If J is integral the characters of the wave
functions can be calculated as before, only now with J instead of L. If J is half integral
the characters are no longer the same. This stems from the fact that a rotation over
an angle 2r no longer leaves the system invariant. This makes the character of all
C.,’s different. The problem is solved by referring to the double groups (denoted by a
prime, e.g. C3, becomes C%)). The lowest possible degeneracy is a doublet, known as
a Kramers doublet, which can only be lifted by a magnetic field.

The character table of the double group can be calculated from the corresponding

normal group in the following way:
1. Introduce a new 27 rotation R

2. Add to the elements of the group all combinations of R with all its C',’s, except
C, (if there is a C, axis perpendicular to the R-axis, otherwise add RC anyway ),
because RC, = C,.

3. Add as many new reps to the group table as there are introduced new classes
above. The newly added character vectors should obey the orthogonality theo-

rems (stated earlier) with all preceding vectors.

4. The characters of the new elements for the old reps are the same as the ones

without R. So x(RC,) = x(C.).

5. The characters of the new elements for the new reps have the opposite sign,
so x(RC,) = x(C,). The exception mentioned in step 2 for (R)C, makes the
characters of these zero: x(R)C2=0.

The character vector of the electron(s) can be calculated with the same formulae as
in Table 1.7 on page 13, only now with J (j) instead of L (I). As an example, one
f-electron in weak crystal field: L = 3, S = 1/2, hence J = 5/2 (the lowest state,
according to Hund’s rules). The character table of O’ is as in Table 1.11. The lower
states (J = L-S = 5/2) of an f-electron in a weak cubic crystal field are a doublet (T'7)
and a quartet (I's). The higher states (J = L+S = 7/2) are two doublets and a quartet
(T's + 'z + I's). What can also be seen in the O' group table above is that the L=3,
S=0 (J=3) state still splits into (['; + 'y + I's), in full compliance with the methods

discussed earlier.
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Table 1.11: Character table of O°.

0’ E R 8Cs 8RC; 3(R)C, 6(R)C, 6Cs 6RCy
I 1 1 1 1 1 1 1 1
I, 1 1 1 1 1 -1 -1 -1
I's 2 2 -1 -1 2 0 0 0
Iy 3 3 0 0 -1 -1 1 1
Ts 3 3 0 0 -1 1 -1 -1
T's 2 -2 1 -1 0 0 V2 =2
I, 2 2 1 -1 0 0 -2 V2
Ts 4 -4 -1 1 0 0 0 0
J=1/212 -2 1 -1 0 0 V2 =2
J=3/214 -4 -1 1 0 0 0 0
J=5/216 -6 0 0 0 0 V2 V2
J=17/218 -8 1 -1 0 0 0 0
J = 77 1 1 -1 -1 -1 -1

1.8.2 Intermediate or strong crystal field

When the field strength is intermediate or strong (= 10*cm™'), then the crystal field
is more important than spin-orbit (SO) coupling. The orbital momentum (L) and
the spin (S) are considered separately, giving the orbital and spin representations
(character vectors) as in the previous chapter. After introducing SO coupling, the

representation of the state is the direct product of the orbital rep and the spin rep:
I'Ls=Tr®ls. (1.39)
For the example of one f-electron in cubic crystal field this means
Ips=T®@Ts= s+ T4+ T5)®(Ts) = (T7)+ (Te +Ts)+ (I'7+1Ts), (1.40)

because, as stated earlier, the character vector of a direct product rep is the product of
the vectors of the individual character reps. In Figure 1.5 the levels for an f-electron

in a cubic crystal field are drawn.

1.9 Lowering symmetry

If the symmetry of the environment is lowered by, for example, stretching of the crystal
then some of the representations are no longer irreducible. To find the coefficients for

the new symmetry one proceeds as follows. Remove from the character vector of I



18 Chapter 1
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T, r, ry
L-D-L L-D-L+L-S L-S+J-D) L-S
a b c d e f

Figure 1.5: Levels of an f-electron in cubic a crystal field. a: free atom, b: strong CF
(without SO coupling), c: strong CF + SO coupling, d: SO coupling + weak CF, €:50

coupling, f: free atom.

the characters of operations that are no longer present. Then decompose it as before,
now with the character table of thc new symmetry. If, for example, a crystal of Cj,
symmetry is deformed in such a way that it no longer has a 3-fold rotation symmetry
axis, the previously found F is no longer irreducible with respect to the new symmetry

(C3). The relevant character tables are:

Cs | E 2C; 30
A |1 1 1
Ay |1 1 -1
E 2 -1 0
C, | E Co
A 1 1
B 1 -1

Thus, A;(Cs,) = A(C2), A2(Cs,) = B(C3) and E(C3,) = A+ B(C?). The earlier found

I’ reduces to
=4, +F — A+2B. (1.41)

A special case of lowering symmetry of the wave function is Jahn-Teller distortion. In
this case there is no external reason for the breaking of symmetry, but the system can

lose energy by going spontaneously to lower symmetry. Sometimes, as seen before,
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the degenerate lowest level of the system can split and since the average energy must
remain unaltered, higher- and lower-energy states are produced. The system can then
relax to a lower-energy configuration. Figure 1.3 shows this graphically for a system

which auto-distorts from Cj, to Cs.

1.10 Comparison with Hamiltonian method

A different way of calculating the degeneracies consists of explicitly calculating the
Hamiltonian for the given symmetry. The energy levels and the wave functions can be

found by solving the equation
Hyp = Evp. (1.42)

The advantage of this method is that apart from the degeneracies also the eigenstates
are calculated. Because there are often undetermined parameters in the Hamiltonian
(which must be substituted by a reasonable value), the absolute positions of the levels
cannot be calculated, but, because the signs of these parameters are nearly always
known, the relative positions are determined by this method. This is clear advantage
over the group theory method. The disadvantage lies in the fact that the calculation
of the eigenvalues of the Hamiltonian is often difficult, if not a painstaking, laborious
job.

As an illustration the calculation of the orbital degeneracy of f-electrons in a cubic
crystal field of intermediate strength (so the spin-orbit coupling is of secondary im-
portance). The extra term in the Hamiltonian - and the only term considered in this
calculation, the others have a too large energy - is a cubic potential:

3
chbic=D-(x4+y4+z4—g-r4). (1.43)

First this has to be translated into orbital momentum operators. Using the method of

Stevens [7], it can be found that
1
Hewiz = Mg (3512 — 30L(L + 1)L2 +25L% — 6L(L +1) +3L*(L + 1?2 + (1.44)
1
+ gL+ L)}
with A = eDB <r*>. We know

L2|l> = LIL+1)|I> = I(I+1)|I>, (1.45)
Ly|I1> = JLL+1)—I(I+1)|1+1>, (1.46)
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L_|l> =
L, =
L, =
L,|l> =

VI(L+1) =11 =1) |1 =1>,
1

—(L L_
1

—(Ly — L_
>

Thus, the Hamiltonian, in matrix notation, for f-electrons (L =

fields of intermediate strength is:

Chapter 1

(1.47)

(1.48)

3) in cubic crystal

|-3> |-2> |-1> 0> |1> [2> |3>
<=3]| 9x - - NI -
<=2| - =21 - - - 15\ -
<—1] - - 3A - - - 3V 15A
<0] - - - 18X - - -
<1| |3V15x - - - 3\ - -
<2| - 15X - - - -21A -
<3| - - 3W15h - - - 9\

Solving the eigen equation gives

E, = —-36)\, ’(ZJ] X |—2> — |2>,

E3 = —6A, ¢3 X I—1> —0.775 |3>,

E4 = —6/\, '(,/)4 o |—2> + |2>,

E5 = 18)\, ¢5 X |O>,

E¢ = 18), e o |—=3> +0.775 |1>,

E; = 18), Py o< |—1>+0.775 |3 > .

(1.51)
(1.52)
(1.53)
(1.54)
(1.55)
(1.56)
(1.57)

The cubic field splits the 7-fold degenerate f-electron state into two triplets and a

singlet, equal to the result of the group-theoretical method.

1.11

Nomenclature and magnetic resonance

So far, only symmetry operations like rotations, reflections and inversion have been

used. They have in common that they all leave at least one point unchanged, therefore

they are called point group operations. However, a crystal has more than just point

group symmetry, it has also translational symmetry. A crystal can be specified by a

lattice, with three translation vectors, expressible in lengths (a, b, ¢) and angles (¢, 3, 7)
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Figure 1.6: Labeling of translation vector parameters.
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: a a
: a b
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D

Figure 1.7: The seven crystal systems and their hierarchy.

and a basis or unit cell. Together with the translations, the point group covering
operations of a crystal are called the full space group or full symmetry group of the
crystal. Lattices and crystals can be labeled with their symmetry. According to what
is taken into account, with or without basis and only point group operations or the full

space group, the crystals can be classified in one of the following ways (see also Figure

1.8):



22 Chapter 1

7 Crystal Systems
FS basis
14 Bravais Lattices 32 Crystallographic
Structures
basis
FS
230 Crystals

Figure 1.8: Relations between different classifications. PG = point group. FS = full
symmetry.

e 7 Crystal systems: Only point group operations and without basis (with spher-

ical basis).
e 14 Bravais lattices: Full space group, but without basis.

e 32 Crystallographic structures: Only point group operations together with

basis (of general symmetry).
e 230 Crystals: Full space group and with basis.

In Table 1.12 the 7 crystal systems are tabulated, together with their 32 associated
point groups.

In the preceding sections only the 32 crystallographic point groups of the crystal are
considered. Because a magnetic resonance experiment cannot detect the translational
symmetry this is by far the most important labeling scheme in these experiments.

In the magnetic resonance study as described in this thesis defects in crystals are
considered. The number of possibilities for the symmetry of these defects is limited
by the structure of the host lattice. Clearly some symmetries cannot occur in some
crystals. A look at the silicon crystal reveals that a hexagonal defect can not exist there.
The total structure of the defect plus the lattice can never have different symmetry
operations than the original ones of the host. In other words the set of operations of

the system must be a subgroup of that of the host crystal. The information obtained
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Table 1.12: Crystal systems.

Spectral Class
System Unit cell Point groups Si  GaAs SiC
Cubic a=b=c T 23 a a -
a=B=y=x/2|T, 2/m3 - -
T, 43m a a -
0 432 - -
Oh 4/m32/m - -
Hexagonal a=b#c Se 6 - - -
a=p0=mr/2, Ce 6 - -
v =2n/3 Cer, 6/m - -
D3h 6'2m - -
Cew 6mm - -
D¢ 622 - - -
D¢, 6/mmm - - -
Trigonal a=b=c Cs 3 c c C
a=0=x Ss 3 c - -
<2r/3# /2 Cs, 3m c c c
Dy 32 C - -
Dsg 32/m c - -
Tetragonal a=b#c Cy 4 - -
a=B=y=n/2|85 4 b b -
C4h 4/m - - -
ng 212m b b -
Csu 4mm - -
Dy 422 - -
Dy, 4/mmm - - -
Orthorhombic | a # b # ¢ Co  2mm e e -
a=F=v=7/2| Dy 222 d d -
Dy, 2/mmm - -
Monoclinic atb#c Cih m g g g
a=y=1/248|C 2 tg -
Cgh Q/m g - -
Triclinic atb#c C; 1 h h h
ot B4 5 1 - -

23
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by magnetic resonance are the spin dependent parameters of the Hamiltonian. The
symmetry of the system subjected to a study is represented by the symmetry of the
Hamiltonian. This is because, if a wave function is invariant under a certain operation

R

Ry =9, (1.58)

then, together with the fact that ¢ is an eigenstate of the Hamiltonian of Equation

1.42, this can be combined into

HRy = Hep = Evp, (1.59)
RHyp = REY = Evp. (1.60)

Therefore the Hamiltonian commutes with the symmetry operation
[R,H]=0, or RHR™'=H. (1.61)

Application of this to a term in the Hamiltonian Hk,k, = K; - M .- K, shows that
Equation 1.61, with the condition that it should hold for all values of K and K,

reduces to
RMR! = M. (1.62)

The restrictions to a general interaction tensor

M:z::c Mry Mzar:
M=| M,, M,, M,. |, (1.63)
Mz:c Myz Mzz

can now be calculated. This calculation is summarized in Table 1.13 for the covering
point group operations of T, crystals. Combination of this knowledge with the earlier
described crystal systems puts the 17 (11) possible symmetries of defects in unary (non
unary) Ty crystals into 8 different spectral classes, see Table 1.14.

The tensor in equation 1.63 corresponds to a specific orientation of the defect and
will generate a single branch in the angular dependent pattern. Application of the
elements of the spacegroup of the host lattice to this tensor as in equation 1.62 gener-
ates equivalent centres. When there is no preference of one orientation over the other
they will exist in equal quantity and will create branches of equal intensity. When an
element of the spacegroup generates an identical tensor these orientations are degener-

ate and the accompanying branches will coincide, leaving a single branch with double
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Table 1.13: Restrictions to a tensor as imposed by symmetry operations.

8

Mm
MM

_Myz Mz:t
_Myz Mza:
:_sz
:_sz
—Myz _Mz:z:
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Mza:

MM
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T T [

=

M.,
M.
MZ(L‘
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& ﬂﬂﬂMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
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1: unary T, crystals like Si, Ge, etc.

*

2: binary Ty crystals like GaAs, 3C-SiC, etc.

3: hexagonal SiC, ZnS, etc. with <111> being the c-axis.
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Table 1.14: Spectral classes.

Class | Spectral name | Point groups Distinguishable orientations
+ (extra for B not in (011)-plane)
a Cubic T,Ty 1
b Tetragonal S4, Doy 1 3
2
c Trigonal Cs, Ss, Ca,, 1 2 4
D3, D3y 3
d Rhombic II D, 1 2 3
17 18 18
e Rhombic 1 Cop 1 2 3 4
5 6
f Monoclinic IT | 1 2 3 4 5 6
17 14 22 18 13 19
g Monoclinic I | Cix,Cy, Cap 1 2 3 4 5 6 7
117 9 12 8§ 10
h General C1, 51 1 2 3 4 5 6 7 8 9 10 11 1
20 15 22 18 18 19 24 17 21 14 16 2

intensity. Uniaxial stress can make some orientations preferential and the intensities of
the branches are then no longer necessarily equal. Another case where the orientations
do not follow the regular distribution is in silicon-carbide. To explain this one has to

look more closely at the SiC structure.

1.11.1 Special case: silicon-carbide

Silicon-carbide comes in many forms, called polytypes. This can be visualized by
constructing the crystal in single layers. The underlying stacking order of the silicon
atoms is hexagonal close packed (HCP), the carbon atoms are then above the silicon
atoms. The first layer forms a triangular net as can be seen in picture 1.9. For the
second layer there exist two possibilities, denoted by B and C (the first layer was of
type A). The third layer can be A, B or C again. Every time there are two distinct
possibilities for each layer, because consecutive layers cannot be identical. In this way
there are an infinite number of different crystal structures, of which the most common
ones are listed in Table 1.15. These polytypes are labeled by their shape of the unit cell
(C= cubic, H= hexagonal and R = rhombohedral) and the minimum number of layers
to unambigiously describe a unit cell. A special form is 3C-SiC, sometimes called 3-5iC

(all the other forms are called a-SiC), which is the only cubic form and has exactly
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a9

Figure 1.9: Two-dimensional triangular nets. The first layer is on position A, for the
second there are then two possibilities, indicated by B and C. The solid lines are not
bonds, but help to visualize the triangular arrangement.

Table 1.15: Different polytypes for SiC.

Polytype | Stacking No. of inequivalent sites | Comments
cubic hexagonal
2H AB 2 0 wurtzite
3C ABC 3 0 GaAs, zincblende
4H ABCB 2 2
6H ABCACB 4 2
15R ABCACBCABACABCB 9 6

the same structure as GaAs, or Si when the difference between the various atoms is
disregarded.

Substitutional defects can replace silicon as well as carbon atoms. Apart from this
distinction there still exist many possibilities, since, due to the elaborate unit cell, not
all silicon atoms are equivalent. They can be classified into two groups. According
to their arrangement of their first and second neighbors they are called cubic (c-sites)
or hexagonal (h-sites) sites. The same applies to the branches as seen in EPR and
ENDOR. In principle not all orientations are the same. For instance, the <111>
direction along the (stacking) c-axis is different than the other 3 ”equivalent” <111>
directions, and a difference in intensity of the related branches is expected, but if the
interaction with the latice does not extend beyond the first or second shell there will
be no preferential <111> direction. In this case the silicon carbide acts like a normal
silicon lattice, as if it contains all 24 symmetry operations of the T; group. This can

be called quasi-crystal behavior.
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Electron paramagnetic resonance
of silicon carbide

2.1 Introduction to EPR

Electron paramagnetic resonance (EPR) is one of the most powerful spectroscopic
techniques. The discovery of the feasibility by Zavoisky in 1944 was made possible by
the sudden availability of vast amounts of microwave equipment - necessary for radar
detection - during the second world war. In later years the method was refined and in
some cases combined with other techniques such as nuclear magnetic resonance (NMR),
culminating in highly sensitive ENDOR (electron-nuclear double resonance) and state-
of-the-art FSE (field-scanned ENDOR), see the chapters on hydrogen. Recent advances
in the sensitivity of detection [1] enabled EPR to maintain its leading position in the
world of spectroscopy, surviving waves of fancy methods.

The application of EPR to solid state physics is a logical step. Consequently, EPR
is used in semiconductor research, where a detailed electronic picture can be drawn of
a paramagnetic center, on the basis of the EPR data, such as line positions, angular

dependencies and line intensities [2].

2.2 Introduction to SiC

The disadvantage of the classical semiconductors, like silicon and to some extent gal-
lium arsenide, show there, where the devices are exposed to severe conditions. The
exploration of new semiconductors was led by the need for devices which can operate
at high temperature, high power and high frequency while they should be able to with-
stand high doses of radiation. Of all the wide band gap materials, silicon carbide and

diamond have electronic, mechanical and chemical properties which can meet all these

29
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requirements. This is the reason for a new surge of interest, which has boosted the
quality of the SiC technology. Pure SiC crystals of many polytypes are now readily
available. The gap to the superior technology of silicon is diminishing rapidly.

What is more, the vast number of polytypes shows promising sides of this semicon-
ductor for device engineering; a wide variety of bandgaps is available. The develop-
ment of the blue light emitting diode (LED) seems possible in this respect, although for
high-efficiency optical devices a direct band gap material would be required, something
which is not available in the range of polytypes.

Now that the specifications of the devices are coming close to the theoretical limits,
it is interesting to compare the capabilities of SiC-based devices to other compounds.
It is difficult to express the ”usefulness” of a material, since this greatly depends
on the application, but two major ways of describing the overall performance of a
semiconductor are often used [3, 4].

The Johnson’s figure of merit considers the high-frequency and high-power capa-
bilities. This is a function of the breakdown electric field (Eg), i.e., the electric field
needed to excite an electron across the bandgap into the conduction band, and the

saturated electron velocity (V;):

EBVS>2

(2.1)

The Johnson’s figure of merit for some common semiconductors are compared in Table
2.1. The high breakdown fields of SiC, GaN and diamond are responsible for their high

figure of merit.

Table 2.1 Johnson’s and Keyes’ figures of merit, relative to silicon. After Ref. [4]

material | band-gap type Johnson Keyes
St 1.12 eV* indirect | 1 1
GaAs 1.4 eV*  direct 6.9 0.46
InP 1.3 eV*  direct 16 0.61
GaN 3.45 ¢V®  direct | 280 1.8
3C-SiC | 2.2 eV®  indirect | 700 5.1
6H-SiC | 2.86 eV® indirect | 1100 5.8
diamond | 5.5 eV?®  indirect | 8200 32

* at 300 K, see Ref. [5]. b at 573 K.
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Keyes’ figure of merit expresses the switching speed of transistors in logic devices.
This is depending on the saturated electron velocity, the thermal conductivity (o)

and the dielectric constant €,:

FM-K = orv/V, /e, (2.2)

In Table 2.1 these numbers are printed. From these data, it is clear that SiC is a
good alternative for diamond. Favoring the use of S5iC, it does not need the extreme
conditions for production, such as high pressure, as is required for diamond. Therefore,
SiC is a promising novel material.

In spite of the renewed interest in this compound, the amount of EPR results is
still rather small. In the early days of EPR, Woodbury and Ludwig made studies of
the basic dopants, nitrogen for n-type and boron (or aluminum) for p-type SiC [6].
The nitrogen donor gives rise to two overlapping sets of three equally intense hyperfine
lines. These can be attributed to two spectra of the nitrogen triplet, one arising
from substitutional nitrogen on hexagonal lattice sites and one from substitutional
nitrogen on cubic sites. The observed spectral intensity ratio of 2:1 agrees well to this
assignment, since the number of cubic sites is twice the number of hexagonal sites
in 6H-SiC, see the chapter on group theory and Ref. [7]. For the boron acceptor
the spectrum is more complicated. Due to nuclear quadrupole interactions, which
mix the ”pure” nuclear quantum states, "forbidden transitions” (Am; # 0) become
visible in EPR. Therefore the observed number of lines increases to more than the
expected quadruplet for *B (I=3/2, natural abundance 81.2%) and septet for '°B
(I=3, 18.8%). Another group of measurements describes the EPR spectra produced by
radiation damage (proton, electron and neutron). In many cases intrinsic defects are
created, for instance (multi)vacancies [8]. In one case [9], a spectrum is found which
is attributed to a point defect, presumably a monovacancy. The hyperfine interaction
with the four nearest silicon atoms and twelve next-nearest carbon atoms of the host
lattice results in a spectrum which exactly follows the intensity behavior as expected

from combinatorics.

2.3 Experimental details

The first sample used in the experiment was supplied by Dr. V.S. Vainer. It was a SiC
single crystal of a hexagonal polytype. Following crystal growth, two similar samples

were cut from it. One of them received a short heat treatment at 2000 °C followed by
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a rapid quench to room temperature. The other part served as reference. The sample

and its position in the magnetic field are depicted in Figure 2.1.

B c-axis Figure 2.1 FEzperimental
-plane '4\17 orientation of the sample

against the plane of the ex-
ternal field.

The second sample which was submitted to an EPR study was a green, transparent
monocrystal of hexagonal (6H) polytype, supplied by V.S. Vainer of the loffe institute
(St. Petersburg). The green color of the sample indicates the presence of "green”
luminescence, or D band (470 nm to 600 nm), possibly related to divacancies [10].
In 6H-SiC:N the green luminescence is present without irradiation of the sample, see

Figure 13 of Ref. [7].

SiC-NL1

I . ]

780 800 820 840 860
Magnetic Field (mT)

EPR Signal (linear scale)

Figure 2.2 Spectrum SiC-NL1 for B || <100> and a microwave frequency of
23.133236 GHz.

The measurements were performed with two superheterodyne spectrometers, oper-
ating at 23.1 and 9.2 GHz [1], respectively, and adjusted to detect the dispersion part
of the EPR signal. The magnetic field was modulated at a low frequency of 83.4 Hz

and could be rotated in a plane which contained the c-axis of the sample. The sample
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was placed in a TEq;; mode, silver-coated, epibond cavity for both the X- and K-band
spectrometers. This experimental set-up permitted in sifu white light illumination to
reach the sample. In the case where light was used, it was from a halogen source,

guided through a quartz rod.
[100] (1111 [011]
870 | SiC-NL1 ' T

860 5
850 4
840 ' .

830 .

820

Magnetic Field (mT)

810 -

800 .

790 1

-50 (0] 50 100
Angle (degrees)

Figure 2.3 Angular dependence of SiC-NL1. A O represents an experimental point.
Solid lines indicate a simulation for the Hamiltonian as in Equation 2.3 with

parameters as in the text, and a microwave frequency of v = 25.133 GHz.

2.4 Experimental results and discussion

In the untreated reference sample no EPR signal has been found. The EPR spectrum
(labeled SiC-NL1) for the heat-treated sample, as acquired by the K-band spectrom-
eter, is shown in Figure 2.2. The angular dependence of this spectrum is depicted in
Figure 2.3. Comparing this with the possible angular dependencies in silicon [11], the
conclusion is that the symmetry of the defect must be rhombic II, 1.e., the defect must
contain three <100> twofold axes. As illustrated in the chapter on group theory, such
a situation is not possible in silicon carbide. The symmetry has to be lower. When

the three <100> axes are removed from the symmetry set, the resulting symmetry 1s
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triclinic. This lowering of symmetry is not observed in the spectrum. This means that
this distortion is comparativély small, or, in other words, the spectrum is determined
by the local environment and not by long-distance interactions. Locally, the struc-
ture of SiC is identical to that of GaAs. This permits the observation of spectra with

seeming rhombic II angular dependence.

r

820 822 824 826 828 830 832 834
55°

Signal (linear scale)

820 822 824 826 828 830 832 834

Figure 2.4 Detail of the SiC-NLI
spectrum at three different magnetic
80 82 84 86 88 80 B2 8% feld gngles (54.74° is parallel to the

Magnetic Field (mT) c-azis).

After having determined the symmetry of the g-tensor, it is interesting to know
what the cause is for the splitting of the lines, as illustrated in Figures 2.2 and 2.3. At
first the idea might appeal that this splitting is due to the Zeeman-interaction g-factor
anisotropy. On the other hand, this is not able to account for the difference in intensity
of the two outer lines and the central line, unless we assume that a second spectrum is
superimposed in the middle [12]. A much easier explanation is possible if we assume
a higher electron spin value. An electron spin value of S=3/2 would fit nicely to the
observed intensities. In that case a complicated angular dependence is expected in the
middle, as is indicated in Figure 2.3. Indeed, such a structure is revealed upon closer
inspection. Figure 2.4 presents the details of the spectrum for the three characteristic
angles 0°, approximately 54.74° and 90°. The spectrum can now be assigned to a spin

Hamiltonian

H=gp,B-S+5-D-5. (2.3)
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A fit of the free parameters to the experimental data yields values of g = 2.00299, D, =
403 MHz, D, = -5 MHz and D3 = -399 MHz. A simulation of the angular dependence
of the resonances expected for the Hamiltonian as in Equation 2.3, with these values

is drawn in Figure 2.3.
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836 ‘ o .
834
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828
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820 | :
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816 bt | | l I l | ] L 1
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Field Direction (degrees)

T

Figure 2.7 Angular dependence of SiC-NL3. The points are experimental points for
v=28.133 GHz, while the solid lines are interpolations.

To further analyze and decompose the spectrum shown in Figure 2.4, the influence
of illumination with white light and temperature increment has been monitored. As
can be seen in figure 2.5, most of the individual lines decrease their intensity upon
illumination, while one line clearly increases. T'his indicates at least two different EPR
components. The across-band-gap illumination, apart from changing the occupation
of the impurity levels, may also increase the sample temperature. In order to eliminate
this side effect, the temperature dependence of this part of the spectrum was checked.
Figure 2.6 indicates that upon temperature increase, all components similarly lower
their intensity, excluding the afore-mentioned effect on the line intensities. This leads
to the conclusion that the single deviating line is belonging to a different spectrum,
which is labeled SiC-NL2. Finally, the angular variation of the central part (816-

838 mT) of the spectrum was measured; the result is depicted in Figure 2.7. It shows



EPR of SiC 37

~

0

)

3]

[7/]

d

§

é) N N

a B B8
Figure 2.8 A typical spectrum
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spectrum (B ).
two major features: the outer, lower-intensity resonances which exhibit pronounced
anisotropy, and the inner, strong lines of SiC-NL1 whose anisotropy is contained in
a narrow field range of approximately 2 mT. The lower intensity outside lines clearly
have a different symmetry than the SiC-NL1 spectrum. On the basis of the different
illumination dependence, any relation to the SiC-NL2 spectrum can also be excluded.
Therefore, these lines must belong to a separate spectrum, SiC-NL3. The spectrum
consists of two mirrored hyperfine patterns, while a third (isotropic) line in the middle
cannot be excluded. This latter line is even expected, since the most likely candidates
for the hyperfine interaction seem to be nitrogen (*N, I=1, 99.6% natural abundance,
concentration ny &~ 10"7cm™2), giving a triplet spectrum, silicon (*Si, I=1/2, 4.7%;
28Gi 130Gi =0, 95.3%) and carbon (1*C, 1=1/2, 1.1%; '*C, 1=0, 98.9%), all resulting in
the superposition of singlet and doublet spectra. The spectrum can then be attributed

to the spin Hamiltonian
H=gu,B-S+5-A-1, (2.4)

with §=1/2 and I=1 or I=0 + I=1/2. The spectral class (symmetry) of 5iC-NL3 at
first seems to be very low; monoclinic I or lower. But a closer inspection of the pat-
terns reveals that the loops have Moebius qualities: following a loop from 0° to 90° and
back via the other branch does not make a closed loop. Even for the lowest symme-

try (triclinic), such a behavior is not expected. Only misorientation of the sample - i.e.,
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Table 2.2 Hamiltonians of the five spectra encountered in hezagonal SiC.

SiC-NL1 | H=gu,B-S+5-D-5
S=3/2
g: cubic, g = 2.00299
403 0 0
D: rhombic II, D = 0 =5 0 MHz
0 0 =399
SiC-NL2 | H=gu,B-S
5=1/2
g: cubic, g = 2.0048
SiC-NL3 | H=gu,B-S+5-A-1
S =1/2,I=1 or I=0 + I=1/2
g: cubic, g= 1.9984
180 680 O
A: thombicI, A= 1] 680 180 0 MHz
0 0 370
N H=gu,B-S+5-A-1
S=1/2, I=1
g=2.004, g, =2.003
A: cubic, A = 33 MHz
B H=gu,B-S+S5-A-1

S=1/2, I="?
g: cubic, g=2.003
A: cubic, AxI = 16 MHz

when the magnetic field is not exactly in the <011> plane - can give the angular depen-

dency such features. With this in mind. the spectral class can safely be determined as

rhombic I. Table 2.2 summarizes the spin-Hamiltonians of the three specira. For none

of the here-presented spectra there seems to be a difference for the distinct inequivalent
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lattice sites as described before; no apparent splitting of the lines was observed.

For the second, green, sample, the isotropic EPR spectrum, recorded at the X-band
spectrometer is shown in Figure 2.8. In this case the assignment to a single spectrum
also seems dubious. A shell of 8 interacting equivalent silicon nuclei would produce the
observed intensity ratio of the central line to the hyperfine lines (100:19.5). But, in
that case, a second set of hyperfine lines with twice the distance to the central line and
a relative intensity of 1.7% (see Appendix A) should have been observed. Apart from
this, a shell of 8 equivalent atoms is inconceivable. Abandoning the trivial solutions,
the impurities can be explored. Although the diffusion of nitrogen is low, the solubility
is very high [7]. Therefore, the presence of nitrogen-related defects is expected. The
distance of the outermost (indicated by N) hyperfine lines (2.38 mT) compares well
to the spectrum observed by Woodbury and Ludwig [6]. This triplet spectrum was
attributed to the nitrogen donor; in Figure 2.8 a third component is hidden by the
central line. With part of the spectrum solved, the question still remains open as to
the assignment of the rest. Clearly, the satellites, indicated by 3, cannot belong to
(all of) the central part, since they are located asymmetrically around it. The four
£ lines have, upon fitting to Gaussian lineshapes, equal intensities. The presence of
other spectra makes it difficult to determine the multiplicity of the spectrum. A septet
spectrum (I=3) fits best to the experimental data, but the lack of candidates makes such
an assignment illogical. Either it is an octet (I=7/2), in which case it can be assigned
to vanadium, or it is a sextet (I=5/2) which has aluminum as most likely source. The
spectrum can then be attributed to a Hamiltonian with an electronic Zeeman term and
a hyperfine interaction term. The low resolution and presence of other spectra did not
allow for the determination of the angular dependence. Therefore the interactions are
assumed to be isotropic. The spin-Hamiltonian parameters of all spectra, which are

described here, are presented in Table 2.2.
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Chapter 3

DX Centers in Ternary
Compounds

3.1 Introduction

DX is an omnipresent center in many ternary semiconductors (semiconductors contain-
ing three different components, e.g., AlyGa;_xAs). The DX level was first observed by
Lang in 1977 [1] by Deep Level Transient Spectroscopy (DLTS) and TSCAP (Ther-
mally Stimulated CAPacitance). He later identified it with a complex of the donor
(D) with an unknown intrinsic defect (X), presumably the anion vacancy (Vas). Later
models prefer a simpler defect, for instance only a substitutional donor (e.g., Siga),
but the name DX was maintained. The metastable character of the DX defect, as well
as its significant influence on the electronic properties of the material, together with
its omnipresence in I1I-V semiconductors, make it an important subject and necessary
studying in detail. The understanding of the exact nature of the DX defect and its
formation kinetics may lead to a way to eliminate this mostly unwanted defect from

the devices.

3.1.1 Definition of DX

The DX labeling covers a wide range of defects. In principle any donor in a compound
semiconductor can act as a source for DX. Therefore it is difficult to describe, but some

features are common:

e DX is a deep level of the donor.

e DX is present in many semiconductors with different dopants, like Al,Ga;_xAs,

GaAsyP;_,, Cdy_,Zn,Te, GaSb and CdS.

41
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e DX often shows metastability, which results in ”photo persistencies” like PPC

(persistent photo conductivity) or PPE (persistent photo EPR).

Figure 3.1 Stereographic view of the Brillouin zone of a crystal with Ty sym-
metry. The high-symmetry points are indicated with ', X and L.
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Figure 3.2 Band structure of GaAs (left) and AlAs (right) [2].

3.2 Band structure and energy levels

The band structures of GaAs and AlAs are drawn in Figure 3.2. From this it is clear

that in GaAs the T valley is the lowest point of the conduction band, whereas in AlAs

the X valley is the lowest. As a function of the Al-mole concentration (x) in Al,Ga;_xAs

the energy levels of the high-symmetry points (I', I and X) are drawn in Figure 3.3.

The T’ ”mountain” is always the highest point of the valence band. This implies that
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at x=0.45 the crystal switches from direct to indirect gap, although this value is not
generally accepted [3, 4].

As can be seen in Figure 3.3, the DX level apparently is coupled to the L valley with
a binding energy of approximately 130 meV (GaAs) to 210 meV (AlAs). This means

that from x=0.22 the DX level is lowest and will be filled under normal conditions.
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Figure 3.3 Energy levels of the I, X, and L minima in the conduction band,
DX and effective mass (EM) states in Al,Ga1_.As as a function of the Al-mole

concentration (x).

Toyozawa [5] has shown that a deep level often is accompanied by a shallow level.
The short-range electron-phonon interaction can trigger deep-shallow instability with
large lattice relaxation which will be discussed later on. In Al,Ga;_,As these effective-
mass (hydrogenic) levels are visible for the I' and X valley (Figure 3.3). L-minimum
related states were observed in the photoluminescence experiments of Henning [6].
The binding energy of these levels depends on the state [7], see Table 3.1. The most
important thing to notice is that both the deep and the shallow level originate from
the same defect.

Instead of varying the Al-mole concentration to change the band structure, hydro-
static pressure can be used. If we assume that the DX level is equally bound to the L
valley, regardless of the pressure, then at 3 MPa the DX level is pushed out of the con-
duction band [8,9]. According to the literature this point is at 2 MPa [7], so the assump-

tion is not valid. The pressure coeflicient of the DX level is not identical to that of the
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Table 3.1 Position of the effective-mass levels relative to the conduction

band (E, — E).
valley Aq E 1)
r 10 meV - -

X 100 meV 40 meV 40 meV
L 50 meV 25 meV -

N
=)

[y
[od

Energy (eV)
-
o))

1.4

GaAs

1.2 : ' ' |
0 1 2 3 4 5

Pressure (MPa)
Figure 3.4 Energy levels of T', X, L and DX in GaAs as a function of hydro-

static pressure.

L valley. This suggests that the DX state is not comprised only of L valley conduction
band states but rather of states from the entire conduction band. Figure 3.4 shows some
detail of the actual (conduction) band structure as a function of hydrostatic pressure.
In this picture, for the DX level, a linear increasing binding energy is assumed.

An essential element of DX is that capture and emission of electrons can occur only
via the L minimum. For GaAs, the energy separation between the L minimum and the
bottom of the conduction band is comparatively large. Therefore, the capture cross-

section at low temperatures is rather small. This is the source for the metastabilities

of DX [10].

3.3 Large lattice relaxation

Direct indications for the occurence of large lattice relaxation (LLR) are:
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e PPC (persistent photo conductivity) at low temperatures (T<120 K). A sample
cooled in the dark has high resistivity. After illumination the sample is con-
ductive and stays that way for long periods (even days). Apparently, electrons
can be excited to conduction band (like) states, from where they cannot relax to

nonconducting states.

e Small thermal capture and emission cross-sections. A sample cannot be thermally
activated. For that purpose light has to be used, as mentioned above. At low
temperatures the sample can also not be relaxed to nonconducting states with
the help of phonons. There seems to be some kind of threshold for the electrons

to switch between the two states.

e The optical ionization energy is much larger than the thermal ionization energy.
This optical ionization energy is independent of the stoichiometry of the sample
(i.e., independent of z in Al,Gai_xAs, see Ref.[11]).

Energy

Qr
Configuration Coordinate Q

Figure 3.5 Configuration coordinate diagram of the DX center in GaAs at
zero pressure. By, E, and E, are the thermal capture and emission energy and
the optical ionization energy, respectively. The arbitrary zero level s chosen
to be at the minimum of the conduction band (E=0).

All these features point towards large lattice relaxation accompanying ionization or

electron capture. This is normally explained with the help of configuration coordinate
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diagrams (CCDs). In 1977 Lang [1] already proposed to expand the then widely used
interatomic CCDs to lattice CCDs in order to explain the features of DX. The idea
behind CCDs is that the energy of a complex system can be described by a single
(or a few in the case of multi-dimensional CCDs) coordinate. In Figure 3.5 such a CC
diagram for DX is drawn. In this picture Upx represents the energy of the total system
with the electron in the DX level, NOT the energy of the electron in the DX level! The
lowest value of this energy is Epx. Likewise Uy, represents the energy of the system
with the electron in the conduction band (L valley).

If one assumes that the curvatures of the parabola are all equal, then the system

can be described by three parameters:

Ep The thermal capture energy. An electron in the conduction band (UL) always
has a certain thermal energy. When this energy is larger than Ej the electron can
pass the threshold and relax into the DX level. In real space the lattice relaxes to
a new configuration (the atoms relocate to new positions) which is characterized

by the parameter Q7.

E. The reverse process is also possible; an electron with sufficient thermal energy can
cross the threshold and go into a conduction-band state. The threshold energy
(E.) needed for such a process is not necessarily equal to the capture energy Ej.

The difference between E. and E, is the binding energy of the DX level:
Epx = E. — Es. (3.1)

The binding energy is not necessarily positive. In GaAs the DX level is resonant
with the conduction band because the lowest point of the conduction band is
below the DX level, therefore Epx < 0. Even then the DX level need not be
empty at all times. At low temperatures it is possible to effectively stop thermal

emission/relaxation and maintain the initial, non-equilibrium distribution.

A nice experiment which demonstrates this is the pressure experiment performed
by Fujisawa [9], among others. In a GaAs:Si sample at room temperature the
DX levels are mostly empty because this is not the lowest level and the thermal
energy is still big enough to allow for relaxations. The lowest energy states
are the effective mass states, but these are very shallow, therefore most of the
electrons are in the conduction band and the sample is highly conductive (point
A in Figure 3.6, where the conductivity of the sample is drawn as a function of

hydrostatic pressure). When the pressure is increased the DX level becomes the
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lowest level at a certain pressure (20 kbar, point B). Because the temperature is
still big enough for relaxation all electrons will relax from the conduction band
to DX. Hence the conductivity of the sample decreases (point C). At this point
the sample is cooled to freeze the electrons in the DX state. When the pressure
is released the electrons stay in the DX level although this is no longer the lowest
state but the low temperature prevents electrons from relaxing to the ground
state. The sample keeps its high resistivity until the temperature is raised above

a certain value (of about 100 K).
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Figure 3.6 Conductance of a GaAs:Si sample as a function of hydrostatic
pressure (After Fujisawa ct al. [9]).

E, Beside thermal excitation the electrons can also be optically transformed to
conduction-band electrons provided the photon energy is big enough (larger than
E,). This is also demonstrated in the pressure experiment: When, with the sam-

ple in state C (high pressure, low temperature and the electrons in DX levels),



48 Chapter 3

light is shone on the sample the electrons are converted to the conduction band
(when the wavelength is not too big). From this level they cannot relax, as was
demonstrated before. They are now trapped in the conduction band (point E in
Figure 3.6) and the sample stays conductive until the temperature is increased

to a value where thermal capture processes become significant again.

In Tables 3.2 and 3.3 E., E, and E, are displayed for several donors in Al Gaj_xAs
and GaAs,P;_y (copied from Refl. [10]). In this table ipx 1s relative to the L valley.

Table 3.2 CCD parameters for DX centers in Al,Ga;_xAs [10].

donor | E, (eV) | By (eV) | Epx = E. — Ey (eV) | E, (eV)
VIS 0.28 - - -
Se 0.28 0.14 0.14 0.85
Te 0.28 0.14 0.14 0.85
IV Si 0.43 0.21 0.22 1.25,1.45
Ge 0.33 - - -
Sn | 0.19-0.21 0.02 0.17-0.19 1.11

Table 3.3 CCD parameters for DX centers in GaAs,P1_y [10].

donor | E, (eV) | Ey (eV) | Epx = E. — Ey (V) | E, (eV)
S 0.35 0.15 0.2 1.53
Te 0.19 0.12 0.07 0.65

3.4 Microscopic models

The CC diagrams are very useful to explain the physical properties - especially metasta-
bility - of systems. The weak point of CCD’s lies in the fact that they do not say
anything about the microscopic model of the defect. That is why there is still much
controversy about the actual structure responsible for the DX defect. The first model
for DX was given by Lang [12]. He proposed that the defect is a complex of a substi-
tutional donor atom and an intrinsic defect, for instance Tea,Vas, see Figure 3.7. The
character of the defect is mainly determined by the vacancy. This explains the relative
independence of the donor which merely acts as a supplier of electrons. Features which

are not explained by this model are:
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@ Te
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Figure 3.7 Stereographic view of the Lang model.

e The DX concentration is a fixed fraction (in most cases nearly 100%) of the donor

concentration. This also indicates a simpler, easier to produce defect.

e The concentration of DX is independent of growth conditions. This makes the
involvement of lattice self defects (like vacancies) unlikely. A simpler defect of,

for instance, only the donor is much likelier.

e DX is present in many compounds with different donor impurities, both on the

group III as on the group V sublattice.

Figure 3.8 Chadi-Chang model before (a) and after (b) reaction of Equation
3.2.

That is why recent models prefer simpler defects of only the donor atom. Chadi and

Chang [13] conclude that DX is the result of the reaction

9d° — d* + DX, (3.2)
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with d four-fold bound, substitutional donor atoms, not necessarily close to each other
in real space. This equation implies negative Uj; it is energetically more favorable to
lose two electrons than it is to lose one electron twice. In this model the formation
of a DX center is acquired by breaking the bond with a nearest neighbor after which
the donor atom relaxes (i.e., Siga — Si;Vga, see Figure 3.8). So also in this model a
vacancy is involved. The difference with the Lang model is that now the vacancies are
a result of a reaction and are therefore not needed ab initio. In this way all donors can
produce a DX center. Hence, drawbacks 1 and 2, mentioned earlier, do not apply to
this model. The negative-U character can explain why the ground state does not show
EPR: both in DXt and DX~ the electrons are paired, meaning non-paramagnetic
states and DX° -which would be paramagnetic- is unstable. The absence of EPR is

therefore an indication for negative U, although not a proof.

Table 3.4 Reaction equations concerning DX.

indirect gap direct gap
U- | DX + DXt —-2X° DX~ - DXt +2e
U+t DX° — X? DX° - DX* +e”

X, 1s the X-valley effective-mass state.

The reaction schemes for optical processes are depending on the character of the
crystal. For direct-gap (I' is the lowest state in the conduction band) samples the
effective-mass levels are too shallow to be occupied. Electrons are therefore residing in
the conduction band. For indirect-gap (X is the lowest point of the conduction band)
materials the hydrogenic level is deep enough to be filled. The reaction equations for

direct and indirect gap, with and without negative U are then as in Table 3.4.

Figure 3.9 Oshiyama-Ohnishi model. The relazation is indicated by arrows.
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3.4.1 Small lattice relaxation

Kin Man Yu et al. observed in a particle-induced X-ray emission (PIXE) and an ion
beam channeling experiment no off center displacement of Te and Se larger than 0.14
A from substitutional sites [14]. Mizuta and Kitano carried out a fluorescence experi-
ment to investigate directly the local environment of the DX center in Alg 30Gag.70As:Se.
They found that the difference in bond lengths between the two different states was
less than 0.04 A [15). These are indications for small lattice relaxations. The stretching
mode model of Oshiyama and Ohnishi (see Figure 3.9), in which nearest neighbors of
the donor move toward each other, can explain the observed phenomena [16]. Hjalmar-
son and Drummond use a general model in which no large lattice relaxation is needed

to account for the large difference in optical and thermal activation energies [17].

1 T 1 1 1 I 1

after illumination

4 _.”&'w ‘

cooling in dark

EPR Signal (linear scale)

1 1 1

i [ 1 [
760 780 800 820 840 860 880
Magnetic Field (mT)
Figure 3.10 Persistent photo EPR (PPE) of a GaAsyss5Po.45:S sample. The

thick trace shows the spectrum after cooling in the dark, while the thin trace
was taken after illumination. The signal at 848 mT can be quenched by heating
the sample to room temperature.
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Magnetic Field (mT)
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Magnetic Field (mT)

(a) cooling in dark I W I N DO

(b) (white) light on 820 840 860 880
(c) light off Magnetic Field (mT)

Figure 3.11 Persistent photo-enhanced EPR (PPEE) of the GaP:Te sample.
The EPR signal in a) changes phase upon illumination b). After switching off
the illumination, the intensity increases, while the phase is unaltered c).

3.5 EPR experiments

An electron paramagnetic resonance (EPR) study was performed, using several differ-

ent samples, including

1. GaAso_55P0,45:S
2. Ga;ASO_GOPOA():S
3. GaP:Te

4. AlpsGagsAs:Te on GaAs substrate
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Samples 1, 2 and 4 showed PPE (persistent photo EPR). With illumination an
EPR spectrum is generated. This signal can only be quenched by heating the sample
to higher temperatures. In Figure 3.10 this is demonstrated for the GaAsgs5P0.45:5
sample. In this case an EPR line is already present after cooling in the dark, but the
illumination produces a permanent line around 843 mT (g=1.9595). The same EPR 1is
also present after cooling with light on. PPE can be explained with the LLR models as
explained before. The center is excited to a metastable, paramagnetic state X.. EPR
is arising from this effective-mass state [18, 19] or DX° (not possible with negative U).

GaP:Te already shows EPR after cooling in the dark. Illumination only increases
the signal intensity (see Figure 3.11). Cooling in the dark produces a certain distribu-
tion over the two systems, which is disturbed by optical excitations. Since relaxations
are effectively stopped at low temperatures, the original state of the sample cannot be
reobtained. Another way of saying this, is that for GaP:Te the metastable state is not
much shallower than the stable DX. In that case, not all electrons will freeze out in
the DX level, leaving some of them in the metastable, paramagnetic state. This means

bistability instead of metastability.

1 1 1 1 1
2
5 EM
/]
g
.E after illumination
-/
|
5 DX
oy
N
E cooling in dark
m
i 1 1 1 [
780 800 820 840 860 880

Magnetic Field (mT)
Figure 3.12 EPR spectrum of the GaAsoeoPoa0:S sample after cooling in the

dark and after illumination. The sharp-effective mass resonance (EM) does
not change intensity, while a very weak DX signal is generated.
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All samples also show a (comparatively) narrow resonance. The narrowness indi-
cates the absence of strong hyperfine interactions and therefore a shallow state. The
g value (g = 2.0026) is close to the free-electron value g.. This resonance may either
arises from conduction-band electrons or from shallow (effective-mass) states. Since it
does not change intensity upon illumination, we may tentatively ascribe it to secondary
defects. Figure 3.12 shows such a typical resonance for the GaAsg goPg.40:S sample after
cooling in the dark and after illumination.

So far, all EPR signals as described were isotropic. Only in one case the EPR
spectrum revealed a considerable anisotropy. Turning the GaAsgs5P0.45:5 sample by
40° in the (011) plane resolved a small line at 860 mT (see Figure 3.13). The origin of

this anisotropy is not clear. Bulk samples should produce isotropic EPR.

1 1 I I 1 i 1

EPR Signal (linear scale)
‘\\

1 1 1 1 1 1 1

760 780 800 820 840 860 880 900
Magnetic Field (mT)

Figure 3.13 Two spectra of GaAsgssPo45:S for magnetic field directions 40°
apart in the (011) plane.

Another spectrum which recurred in the study was a single, broad line around 800
mT (g = 2.07) with a line width varying from 20 mT in GaAsgs5P0.45:S (Figure 3.13)
to 30 mT in GaAsgeoPo.40:S. Remarkably, in GaAsggoP.40:S this signal was only visible
after etching the sample (10 minutes at 70°C in a solution of H,SO04:H;0:H,0; in a

ratio 3:1:1). These lines do no show any connection to DX. There is, for instance, no
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increasing or decreasing of the intensity after illumination. Apparently they are not

related to DX.

3.6 Valley-orbit splitting

The DX center in bulk material has an isotropic EPR spectrum, because the only term
in the spin Hamiltonian is a cubic Zeeman interaction H = gugB - S. Indeed, most
of the measured bulk samples showed isotropic EPR. On the other hand, epitaxial
layers, grown on a substrate exhibit a small anisotropy in the g factor caused by the
strain between the AlGaAs layer and the GaAs substrate, which have different lattice
parameters, ranging from 5.653 A (GaAs) to 5.661 A (AlAs) [2).

Figure 3.14 Constant energy surfaces of the conduction-band X-valley. The
long azes are directed along <100> directions.

Figure 3.15 Position of the siz X-valley effective-mass states for group-1V
donors (a) and group-VI donors (b), as split by valley-orbit interactions, or
chemical shift, (E13) and strain (AE;).

The conduction-band X-valley constant-energy surfaces are ellipsoids with the long
axes in the <001> directions. In face-centered cubic (FCC) crystals, like Si, GaAs and
AlAs, the X minima are six-fold degenerate (see Fig. 3.1 and 3.14). In principle, the

effective-mass (EM) states obey the same symmetry rules for calculating the energies
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as the valleys to which they are connected and should show the same degeneracy
behavior. But the electronic states of a defect do not have the crystal. To be more
precise, the wavefunctions are derived from the band-structure Bloch functions and
the hydrogenic effective-mass states (1s, 2s, 2p ...). The highest symmetry which the
latter can have is cubic. And, as shown in the chapter on group theory, the highest
degeneracy is then three-fold. Indeed, the valley-orbit interaction, or chemical shift,
lifts the six-fold degeneracy to a triplet (T3), a doublet (F) and a singlet (A;). For
group-IV donors on anion sites (e.g. Siga), the T3 triplet state lies lowest (see Fig. 3.15).
This state, is further split into the T3, and the T, , and T3, states by strain, assuming
the growth direction is [001] [20, 21]. The magnitude of this splitting is proportional
to the deformation potential = [22]:

AES - T2’2 — Tgyx(Tgyy) = E(B_L — 6”), (33)

where e ande| are the perpendicular and parallel strains, respectively [22]. At low
temperatures Ty . is not populated because AE; is estimated to be 14 meV, much
larger than the average thermal energy of 0.4 meV at 4.2 K. A field parallel to the
[100] direction is parallel to the long axes of the x-pockets and parallel to the short
axes of the y-ellipsoids. Two distinct g values are then observed. But a field in the (110)
plane always makes equal angles with the x- and y-pockets [22], resulting in a single,
anisotropic line. Table 3.5 gives a summary of data on silicon-doped Al;Ga;_,As on

GaAs substrates.

Table 3.5 g factors of silicon in Al,Gay_.As:GaAs.
x 1.0 0.6 0.56 0.7 0.8 041 0.6
q 1.978 1.962 1.9653 1.9667 1.9690 1.947 1.966
g, | 1.945 1.943 1.9550 1.9543 1.9534 1.932 1.937
Ref. | [20]  [20] [23] (23] [23] [11]  [11]

For group-VI donors on the group-V sublattice (e.g., Teas), A1 is the lowest level.
This results in an isotropic g value. The now very small anisotropy of the g factor is
a result of the slight mixing of A; and E states, as caused by strain. The valley-orbit
splitting can be calculated from the observed anisotropy in g {22]:
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Figure 3.16 Angular dependence of the resonant field of sample consisting of
a AlosGagsAs:Te layer on a GaAs substrate at 9.227028 GHz.

3sin26 14 3y
9(6) — g0 = (g — 91) ll— 5 } !1— =, (3.4)
V1+sytay

with go the donor g value in absence of strain, g; and g, the parallel and perpendicular
independent-valley g factors, (g = 1.978, g, = 1.945), taken from the results of a
Si-doped AlAs epilayer on a GaAs substrate., see Rel. [20], and y the ratio of the
strain energy (AE,) to the valley-orbit splitting (Fy3):

_ AE,
E12 '

Yy (3.5)

For AE, a value of 7 meV is taken; halfway between a no-strain GaAs:GaAs sample
and a 14 meV strain AlAs:GaAs sample [22] as the used sample was Aly 5sGagsAs:GaAs.
The observed anisotropy (gpo1] = 1.9475 and gj110) = 1.9434, see Figure 3.16), yields a
value for the valley-orbit splitting of Ej; = 110 meV. Table 3.6 gives a comparison of

this result with values for other donors.
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Table 3.6 Valley-orbit parameters for some group-VI donors in Al,Gay_,As.
donor S Se Te
g[oo1] 1.963 1.961 1.9475
guog | 1954 1953 1.9434

9o 1.957 1.955 1.945
z 0.6 0.6 0.5
Ref. [22] [22] this work

AE, |84 meV 84meV 7.0meV
E, 19 meV* 20 meV* 20 meV
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Chapter 4

Hydrogen in silicon

4.1 Introduction

With a mass-abundance of 78% to 81% hydrogen is the most common element in the
universe [1]. What is more, the hydrogen atom is the most basic element possible,
thus inspiring turn-of-the-century scientists to the theory of the quantization of the
electronic levels and, more general, to the formulation of quantum mechanics. In solid
state physics hydrogen still serves as model for the effective-mass states, i.e., a general,
isoelectronic, impurity can be seen as a positively charged core and, lightly bound to
this, an electron. In this theory the host lattice only affects the hydrogen-like states
by changing the dielectric constant of the background, thereby increasing the radii of
the states.

Recently hydrogen enjoys a growing interest among theoretical and experimental
semiconductor physicists. This is motivated by the dramatic effect of hydrogen on the
electronic properties of the material. Hydrogen can very easily satisfy dangling bonds
or attach itself to donors or acceptors and thus terminate their electrical activity by
compensating the charge carrier, i.e., capturing or supplying an electron [2]. Many
technologically important shallow and deep levels - for instance DX in GaAs [3] (see
Chapter 3) - can be readily passivated. Especially shallow acceptors (B, Al, Ga, In

and T1 in silicon) are easily neutralized [4].

4.1.1 Diffusion of hydrogen

Another remarkable feature of hydrogen is its fast diffusion in the silicon lattice. The

diffusion of an impurity can normally be expressed by Fick’s second law

%—f = DV?*C, (4.1)

60
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where C(z,t) is the concentration as a function of space and time and the diffusion

coefficient D is a function of the temperature
D(t) = Doe EBe/FT (4.2)

with Dy the prefactor, or infinite-temperature diffusion coefficient, £, the activation
energy, k the Boltzmann constant and T the absolute temperature. In Table 4.1
these parameters are tabulated for the fast diffusers (H, Au, Li, Cu), as well as some
important dopants (P, B) and the silicon selfdiffusion. In Figure 4.1 the diffusion
coefficients of these elements are plotted as a function of temperature. This shows that
for temperatures higher than 530 °C hydrogen diffuses faster than any other element,
(D=10"*cm?s~! at 1000 °C).

Table 4.1: Diffusion parameters for some fast diffusers in silicon and some other
elements [5, 6].

element | Dy (cm?s™!) E, (eV) T (°C)
H 9.4-1073 0.48 450-1207
Cuy; 4.7-1073 0.43 300-700
Au 2.4-1071 0.39 700-1300
La 2.3-107° 0.72 0-877
B 17.1 3.68 1120-1335
P 10.5 3.69 950-1235
Si 1.81-104 4.77 900-1300

Li

1 Figure 4.1 Arrhenius plot of the
1 diffusion coefficient of fast diffusers
1 (H, Au, Cu and Li) in silicon in
A comparison to some other important
elements. For temperatures higher
1 than 530 °C until the melting point
300 of silicon (1410 °C[7]) hydrogen 1is
Temperature (K) the fastest diffuser. Source:[6]).

Diffusion Speed (cm?s™)
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For the diffusion mechanism itself several models are proposed. Diffusion through
diatomic, molecular hydrogen is not likely, since, although it is more stable than
monatomic hydrogen, its activation energy (the threshold for diffusion) is too high;
about 2.7 eV, as compared to the small energy barrier for atomic hydrogen. Even
if we take into account the H-I dissociation energy of 1.6 €V, it is still energetically
favorable to diffuse through a monatomic species [8].

The low activation energy of 0.48 eV indicates a simple (monatomic) species dif-
fusing through interstitial lattice positions (see Figure 4.2 for the nomenclature of
the various lattice positions). This can, however, not explain the low-temperature or
high-concentration data. For this region Chang and Chadi calculated that a diatomic
hydrogen complex accounts for the diffusion [9, 2]. In their model the hydrogen diffuses
in pairs, changing from interstitial molecular hydrogen to the metastable H} complex (a
combination of a bond-centered and an anti-bonding hydrogen atom). The movement

of the individual atoms is correlated, while different paths are possible.

Pos. Ezample Symm.

Si (0,0,0)

(1,1,1)
BC (1%7%;%2 -D3d
AB  (-3r35r35) Cs
C (070,1) C2v
M (0’_%7'%) Clh
Td (-17—]4_1) Td
Hex (0,0,2) D3y

Figure 4.2 High-symmetry positions in the silicon lattice.
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4.1.2 Lattice positions

When the silicon crystal is at sufficiently low temperaturc and hence the hydrogen
atom is frozen in the lattice, this atom can occupy various positions in the lattice
with different symmetries, including bond-centered (BC) and anti-bonding (AB) sites.
Both have trigonal symmetry, because in both cases the hydrogen atom is situated on
a <111> crystal axis. Other possibilities are interstitial cubic (Ty), orthorhombic (C =
Cyy, on a <100> axis), monoclinic (M = Cy;, on a mirror plane) and hexagonal (Hex)
symmetries. For negatively charged hydrogen the cubic interstitial position is predicted
as the lowest energy state, HI° can be either on this Ty site [2] or on the BC site [10],
whereas positively charged hydrogen is believed to relax to the high-electron-density
BC site [2, 13]. Therefore, one expects BC hydrogen in p-type silicon and 7y hydrogen

in n-type silicon.

hf (' H

I

hf(293)
hf(29Si)
—

Gain x 1

Magnetic field (Oej

) I L 1 L | L | 1
13380 13370 13360 13350

It

1 1
13400 13390

Magnetic field (Oe)

Figure 4.3a The Si-AA9 spectrum Figure 4.3b Angular dependency of
at 77 K, B // <100> and v=37.47 Si-AA9 with B in the (011) plane at
GHz [14]. T="7/K andv = 37.412 GHz [14].

Normal muonium (muonium on a 7y site) and anomalous muonium (muonium on
a bond-centered position) have both been observed in SR [15]. Because muonium is
chemically equivalent to hydrogen and deuterium, only differing in the mass of the nu-
cleus, also EPR spectra of "normal” hydrogen (deuterium) and ”anomalous” hydrogen
(deuterium) are expected. The only EPR observation of hydrogen so far has been the
Si-AA9 spectrum by Gorelkinskii and Nevinnyi [14]. This trigonal spectrum, observed
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in a hydrogen-implanted high-purity silicon sample, showed a small hydrogen hyperfine
interaction doublet splitting, which changed into a triplet when switching to deuterium
implantation, thereby giving direct proof for the presence of (a single) hydrogen in the
defect. The evidence for the BC position of the hydrogen comes from the the trigo-
nal symmetry of the spectrum and the small hydrogen hyperfine interaction, which in
LCAO analysis (Linear Combination of Atomic Orbitals, see appendix C) means low
charge density on the hydrogen nucleus and large ?*Si hyperfine interaction. This is
expected for neutral hydrogen on the trigonal BC position, where the paramagnetic
electron resides in the antibonding state (see Figure 4.4), since the bonding level is
filled with the two silicon-silicon bond electrons. In this case there is no charge density
on the hydrogen nucleus and therefore no Fermi-contact interaction, resulting in the
absence of hyperfine structure.

Figure 4.4 Formation of the Si-H-St bond.
On the left the bonding (b) and antibonding
/ i (a) levels are drawn. The Is state of the

Q ———;—— hydrogen electron (right) only couples to the
; —— 1S bonding state, giving rise to a lower and a
! ! higher bonding state. The third, unpaired,
b —e-e— H paramagnetic electron has to reside in the an-
\ ' tibonding state with a node in the wavefunc-
. \_.-._' tion on the hydrogen core. This configuration
Si-Si Si-H-Si H . . . .

will result in an absence of isotropic hyperfine

interaction for BC-H° [10].

4.1.3 Hydrogen introduction into the lattice

In contrast to to the high diffusion coefficient, hydrogen has low solubility in silicon.
In the absence of any trapping impurities the solvability at 1 atm gas pressure follows

the temperature dependence [5]
S =2.4-10%e188V/ETcm=3, (4.3)

This implies that for moderate temperatures, exposing the sample to a hydrogen plasma
will yield a very low concentration (e.g. 106 cm™ at 350 °C). While this is a good
method for passivating impurities, and has the advantage of not damaging the crystal,
it evidently not suffices for generating a large amount of hydrogen defects.
Implantation of hydrogen has the advantage that the concentration and depth pro-
file can be controlled by varying the dose and the proton kinetic energy, respectively.

When this implantation takes place at low temperatures, large concentrations can be
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maintained throughout the crystal. The range of protons is somewhat more than 1
pm per 100 keV energy, while for high current density of 1 mA/cm?® and long exposure
times, total doses of more than 10" can be achieved, with local densities up to 25
at% . On the other hand, by ion implantation a large number of (unwanted) radiation

defects can be formed.

4.2 The Si-NL51 spectrum

Many years of research in the field of radiation effects in silicon have resulted in the
discovery and identification of a variety of centers, including vacancies, self-interstitials
and complexes of these primary defects. One of the most prominent and easy-to-
produce radiation defects is Si-B3 [11, 12], which is well established to be originating
from a self-interstitial complex oriented along a <100> crystallographic direction, re-
sulting in an electron paramagnetic resonance (EPR) spectrum with fairly uncommon
(tetragonal) magnetic field angular dependence. In the current study of defects created
by hydrogen implantation of silicon we encountered a defect which seems to be related
to Si-B3, in the sense that it has the same symmetry and similar, though not identical,

formation kinetics.

4.2.1 Experimental details

As starting material for the experiments high-purity, high-resistivity (6k{lcm),
silicon was used. The material was submitted to proton or deuteron beam implan-
tation with a starting energy of about 30 MeV (H) and 25 MeV (D) per nucleon. In
between the cyclotron source and the target an aluminium absorber of 3.9 or 1.6 mm
thickness was placed. The ion current of circa 0.5 pA/cm? yielded a dose of circa
1-10% cm~2. The implantation was repeated with different absorber thicknesses in
order to produce a homogeneous distribution of hydrogen and the defects. The total
dose was then estimated to be 5 - 10'® cm~? in the 1 mm thick sample [14]. During
implantation the sample was kept at a temperature of approximately 300 K.

After the implantation, the samples were given short (20 minutes) anneal stages at
comparatively low temperatures (380-540 °C) in air, without any form of quenching
afterwards. To remove surface defects, the samples were etched in a solution of HF
and HNO; in a ratio of 1:3.

The measurements were performed on two superheterodyne EPR spectrometers,
one with an operating frequency of 9.2 GHz (X band) [16] and one with 23.3 GHz (K
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band). Both have low-frequency field modulation and were tuned for dispersion. The
sample was kept at low temperatures in TEqy; cylindrical cavities with high Q factors.
To these cavities low-power microwave radiation, in the uW range, was applied. The
sample could be in situ illuminated with white light from a tungsten source, guided to

the sample through a quartz rod. Quantitative details are given in Chapter 5.

4.2.2 Results

Following the sample preparations as described above, several EPR spectra could be de-
tected upon illumination. In the hydrogen-implanted sample a superposition of three
different spectra could be resolved and identified, as can be seen in Figure 4.5 (top
trace), where these spectra are plotted for the magnetic field along a <100> crystal-
lographic direction, as acquired at the X-band spectrometer. First, the figure reveals
a slightly anisotropic spectrum (), possibly AAl, but not further discussed in this
study. Another spectrum, which could be identified by its angular dependence, is the
spectrum associated with the self-interstitial, Si-B3 [12], first observed by Daly [11].

| f i f I I I

Figure 4.5 FEPR specira
of the hydrogen (top trace)
and deuterium (bottom trace)
implanted samples, observed
at X band, with the mag- hydrogen
netic field parallel to <100>
(T=4.2K). The first sample
was annealed at 380°C in air,
while the latter underwent a
likewise treatment at 540 °C. deyterium

EPR SIGNAL (linear scale)

| I | ] [ L
326 327 328 329 330 331 332

MAGNETIC FIELD (mT)
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Apart from these two spectra, Figure 4.5 discloses a third, previously undiscovered
spectrum, which is labeled Si-NL51. Switching from protons to deuterons as an im-
plantation species does not change the line positions or line widths of this spectrum.
This is illustrated in the bottom trace of Figure 4.5, where a scan is shown for an
identical sample, except for the implantation type (deuterium instead of hydrogen)
and the anneal temperature (here 540 °C, instead of 380 °C for the top scan). Such a
result suggests the absence of hydrogen in the defect, but in the next section we will
present an alternative reason for this lack of difference. Comparison of the two scans in
Figure 4.5 reveals another interesting feature, namely the absence of 5i-B3 in the lower
scan. This is caused by the difference in anneal temperature. The comparatively high
temperature of 540 °C already anneals out Si-B3 (consistent with Figure 1 of Ref.[12]),
while Si-NL51 is more persistent and subsists.

[100] [111] [o11] [100] [111] [011]
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Figure 4.6 Angular dependence of Si-NL51 for X band (a) and K band (b)
with the magnetic field in the (011)-plane. The experimental points of Si-NL51
(Q), a (+) and unidentified resonances (x) are marked. Along the solid lines,
which indicate simulations with the Hamiltonian as described in the text for mi-
crowave frequencies of 9.226106 GHz (a) and 23.282640 GHz (b), the arbitrary
labeled defect orientations are plotted (with 8 corresponding to [100]). The circles
around the orientations indicate the electron spin state transitions (open circles:
mg=-1 to mg=0, solid circles: mg=0 to mg=1, ). For (b) a misorientation of
the sample of 4.1° was introduced inlo the simulation to more accurately follow
the observed line positions. The Si-B3 spectrum was absent in this sample.
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To further analyse the spectrum the angular dependencies were measured. The
results are shown in Figures 4.6(a) and 4.6(b) for X and K band, respectively. The
first task is to find the components of the spin Hamiltonian, in other words to determine
the cause of the separation of the different parts of the spectrum. In view of this, it is
interesting to note that a change of splitting of the lincs occurs when going from the
low-frequency X-band, to the higher-frequency K-band spectrometer. This eliminates
the possibility of the splitting being caused by a hyperfine interaction, which is in first
order magnetic-field independent. It can also be excluded that the spectrum is entirely
due to an electronic Zeeman interaction, since this can never account for the intricate
changes of the structure when altering the microwave frequency. First, a pure Zeeman
interaction H = ugﬁ ‘g S would produce a spectrum whose splitting would be directly
proportional to the microwave frequency. Secondly, no symmetry gives rise to the
observed patterns as disclosed in Figure 4.6. This leaves behind the involvement of a
crystal-field term in the Hamiltonian for the cxplanation of the observed line positions.
The lowest value of an electron spin for which crystal fields can affect the spectrum is
S=1. The Si-NL51 spectrum can then be described with a spin Hamiltonian containing

an (electronic) Zeeman and a crystal-field term
H:ugﬁ-g-§+§-D-§, (4.4)

where both g and D are tetragonal tensors of second rank possessing <100>-axial
symmetry, and S=1, corresponding to a triplet state. The experimentally determined
values of g and D can be found in Table 4.1, together with the spin-Hamiltonian

parameters of the other spectra detected in the studied material.

Table 4.1. Spin-Hamiltonian parameters of the discussed spectra.

I Center  Symmetry Spin | Term / L Unit | Ref.

Si-NL51  tetragonal S=1 <100> this
<100>-axial g 2.00707 2.00069 study

D -37.9 19.0 MHz

Si-B3 tetragonal S=1/2 <100> [12]
<100>-axial g 2.0166  2.0054

Si-AA1  orthorhombic S=1/2 <011> [14]
<011>-axial g 1.9954  2.0002

4.2.3 Discussion

Spectrum Si-NL51 exhibits tetragonal symmetry (point group Sy or Dyy), indicat-

ing a symmetry axis along a <100> direction. This is quite rare in silicon, where
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only about 5% of the known centers [17] have this symmetry. All of them are radia-
tion defects (without presence of the radiation species) {18, 19] or are <100>-uniaxial
strain-induced signals [20, 21]. Since seemingly the identical spectrum is produced
for hydrogen- and deuterium-implanted material it would be tempting to ascribe the
center to a radiation defect, without incorporation of implantation particles.

An analysis of the D-tensor reveals further information about the defect. The
magnitude of D is very small for a triplet spectrum. When we use the approximation

of two interacting point-dipoles at a mutual distance r we get
2

D, = Z—; : ’:—3 (4.5)
where y = pp = 9.2740154-1072* J/T and po = 47-107" N/A?. The experimental
value of D, then yields an inter-dipole distance of nearly 9 A. A careful search for 2°Si
or other hyperfine lines within 50 mT of the Zeeman lines was made for the Si-NL51
spectrum, but none were found. It is important to note that there is also no hint of
any structure in the Zeeman lines which can be associated with 'H or 29Gi hyperfine
interactions. It is also important to note that the EPR signal is very sensitive to the
sample temperature; it vanishes for temperatures above approximately 20 K. In view of
these results, the structure of the spin-triplet Si-NL51 center as arising from interacting
dipoles which belong to two different cores at a distance of 9 A with high localization is
not very likely. More plausible is an extended, one-core defect, in which the value of 9
A should be interpreted as a measure for the radius of the hydrogen-like effective-mass
wavefunction. Such an extended core eliminates the possibility of observing hyperfine
interactions of any nucleus, since even the strongest (closest) interactions would not
be resolved in the spectrum. In this way we can still not exclude the involvement of
hydrogen (deuterium) in the defect.

Because of the high electron spin (S=1) and the fact that it is seen only upon
illumination Si-NL51 is most likely to arise from an excited state. On basis of the
angular and frequency dependence we propose as a model for Si-NL51 an excited state
of a <100>-oriented complex. It should be noted that the possibility of Si-NL51 and
Si-B3 arising from the same structure cannot be excluded. The absence of 5i-B3 from
the higher-temperature heat-treated (540 °C) sample should then be explained by an
annealing-induced shift of the Fermi level. In this case it would be logical to assign
Si-NL51 to an excited, neutral charge state of the di-interstitial (SiSi)g. Nevertheless,
such a possibility seems not very likely, since Si-NL51 has not been observed in the
elaborate study of Si-B3. On the other hand, if we do not assign it to the di-interstitial,

the range of self-interstitials seems to be exhausted. This is in favor of a model which
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includes hydrogen (deuterium) in the structure. The involvement of hydrogen in the
defect however cannot be positively deduced from the experimental data presented

here.
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Chapter 5

Identification of hydrogen
molecules in silicon

5.1 Introduction

In Chapter 4 a summary was given of the possible configurations of atomic hydrogen
in silicon. However, for higher concentrations, hydrogen is expected to freeze out in
diatomic complexes. There are many possibilities for these complexes, but the most
likely ones are:

Molecular Hydrogen. This is a normal hydrogen pair, placed interstitially around a
T, site and without much interaction with the silicon lattice. The resulting symmetry
is, in principle, trigonal (Cs,).

BC2. Two hydrogen atoms on BC positions, as described in Chapter 4, of near Si-
Si bonds. This configuration is not very probable, since a hydrogen atom in a 5i-5i
bond stretches this bond by approximately 30% to 3.2 A therefore causing strain in
the vicinity of the defect, repelling other such structures. The symmetry of this config-
uration would be monoclinic (Cyz). Of the structures mentioned here, this is the only
one which is paramagnetic in the neutral charge state, since it does have two unpaired
spins.

Satisfied Broken Bond. When a broken bond is satisfied with two hydrogen atoms
the resulting symmetry is trigonal, but very likely to relax to lower symmetry (up to
triclinic C}) in order to release some of the huge stress.

Metastable Hydrogen, H}. This is a pair which consists of a hydrogen atom on both
sides of a silicon atom, one on the bond-centered position and one on the antibonding
site. This is the only configuration in which the hydrogen atoms are non-equivalent.

Because both atoms are on the <111> axis, the symmetry of this complex is trigonal.

72
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This is an intermediate configuration in the hydrogen diffusion mechanism as described

in Chapter 4. Experimentally, this structure was observed by Holbech et al. [4].

Monatomic
T4 BC AB
Diatomic
H, 2xBC SBB H,
Passivation

e

Acceptor-H Donor-H

Figure 5.1 Various structures for monatomic hydrogen (as discussed in Chap-
ter 4), diatomic hydrogen, and itmpurity-hydrogen complezes.
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Figure 5.1 shows these possibilities for diatomic hydrogen complexes in comparison to
the monatomic structures mentioned in Chapter 4.

Of the above-described complexes, the molecular hydrogen has the lowest calculated
energy, even lower than two isolated hydrogen atoms of any type. Therefore, these
molecules are presumed to be present in undoped material. Neither of these complexes
has ever been observed in EPR. In doped silicon the hydrogen would be trapped by
the donors or acceptors, forming defects of still lower energy, see Figure 5.2. In this
chapter the observation of a new spectrum, labeled S5i-NL32, will be reported. It will

be argued that this spectrum arises from molecular hydrogen.

Y | T T T
-1k H (T4) 4
_’i 2F 2HTY /
E 2H* (BO)
& 3r S
& =
5 H,
2
2B-H ) :
Figure 5.2 Energy as a function of
s p.H the Fermi-level for some of the dis-
-5
cussed complezes. In undoped ma-
L ' 1 ! ‘ terial the hydrogen molecule has the

00 02 04 06 08 1.0
Fermi level (V) lowest energy [2].

To produce the Si-NL52 spectrum as starting material undoped, high-resistivity
(6kQcm) silicon wafers of approximately 1 mm thickness was used. This material was
exposed to a proton beam from a cyclotron source. The energy of the hydrogen par-
ticles, originally circa 30 MeV, was moderated and dispersed by placing an aluminum
absorber in between the cyclotron source and the target. The ion current of roughly
0.05 pAcm~? yielded a dose of circa 10'” protons per cm®. After this hydrogen im-
plantation the samples received short annealing stages at relatively low temperatures
(typically 250 °C) in ambient air for approximately 20 minutes, without any form of
quenching afterwards. To remove surface defects, the samples were etched in a solution
of HF and HNOQ3 in a ratio of 1:3. The samples were then placed in our superheterodyne
K-band and X-band spectrometers operating at 23.3 GHz and 9.2 GHz, respectively.

Both had low-frequency field modulation and were tuned for dispersion. The sample



EPR Signal (linear scale)
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Table 5.1 Quantitative specifications of the EPR spectrometers.
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Magnetic Field (mT)

[ X band K band
Microwave-frequency 9.2 GHz 23.3 GHz
Field modulation 12.3 Hz 904 Hz
Tuning mode dispersion dispersion
Cavity TEoin: TEo1
Q factor 43000 5000
Temperature >7 K 4.5 K
Microwave power —40 - =10 dBm —40 - +5 dBm
RF power (ENDOR) - +36 dBm
RF chopping — 3.3 Hz
< 100>
40x
1x
3&5 350 355
<111> ’ ! "
. . . Figure 5.3 Spectra of Si-NL52,
—ori= 325 330 335 asg measuredp at th]; X-band
(9.225718 GHz) spectrometer, for
a magnetic field along the crys-
tallographic  directions < 100>,
W <I111> and <011>, respectively.
The microwave power (P,) was -
20 dBm and the sample temper-
ature T = 7.7 K. The observed
s 3o Y (integrated) intensity ratio of the

(single) side and central lines is,
at these conditions, 1:53.
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was kept at temperatures close to ambient pressure liquid-helium temperature in the
center of TEg; cylindrical, high-Q-factor cavities. Here it was exposed to low-power

microwave radiation in the uW range [1]. See table 5.1 for quantitative details of the

spectrometers used.

5.2 Results

The sample preparations as described above resulted in the generation of the Si-NL52
spectrum, see Figure 5.3, where the spectra are shown for the magnetic field along the
principal crystallographic directions <100>, <I111> and <011>, as acquired at the
X-band spectrometer. Comparison of the <100> spectrum to the K-band spectrum
for the same field direction (see Figure 5.4) shows that the splitting of the outside lines
is caused by a field-independent interaction, i.e., a hyperfine term in the Hamiltonian
describing the interaction of the electron spin with a (magnetic field of a) nuclear spin.
The same analysis also reveals that the splitting of the central line s (mostly) due to

the anisotropy of such a field-dependent term: electronic Zeeman interaction p, B-g-S.

@ =,  9.225718GHz
0
]
2
g
-észz 324 326 328 330 332 334 336
g ®) 23.229520 GHz
2 Figure 5.4 Spectra of Si-NL52,
By as measured at the X-band (a)
and K-band (b) spectrometers,
for the magnetic field along the
crystallographic direction <100>.
This identifies the nature of the
822 824 826 828 830 832 834 splitting as HF interaction and
Magnetic Field (mT) shows that the intensity ratio can

change.

Another interesting feature which is revealed by the comparison of the X- and K-
band spectra is the difference in (integrated single line) intensity ratio of the side and

middle components. These ratios depend on the operating temperature, microwave



Hydrogen in Silicon 77

frequency and power in an intricate way. Experimental values of 1:3 for high powers
and low temperatures at our K-band spectrometer to ratios as high as 1:200 have been
observed. The angular dependence of the Si-NL52 spectrum (see Figure 5.5) displays
that the symmetry of the originating center must be trigonal (point group Cs, S3, Cs,,
D3 or Djyy).

[100] [111] [011]

840 .

835

830

Figure 5.5 Angular de-
pendence of Si-NL52 for
K band. The experi-
mental points of Si-NL52
(O) and unidentified res-
onances of lower inten-
sity (+) are marked. The
solid lines indicate a sim-
ulation with the Hamilto-
nian as described in the
text for a microwave fre-

5 110 2|0 | ! l | l . quency of 23.2295 GHz
30 40 50 60 70 80 90 and an intensity thresh-

Angle (degrees) old of 0.05 (mazimum in-
tensity is circa 1).

Magnetic Field (mT)

825}

820 .

In addition to the EPR spectra, a limited ENDOR (electron nuclear double res-
onance) study was started on the defect. This revealed the presence of interacting
hydrogen and silicon in the vicinity of the defect, although the interactions are rather
small. All lines were in the neighborhood of the nuclear Zeeman frequencies (42.5759
MHz/T for 'H and 8.458 MHz/T for 2°Si [3]). Figure 5.6 shows a hydrogen ENDOR

scan for a magnetic field close to the <011> direction. The scan shows a symmetric
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Figure 5.6 An ENDOR scan for the magnetic field (B=826.00 mT) 5° away

from <011>. The scan is split at the nuclear Zeeman frequency of hydrogen

(vy = 35.168 MHz for this field) and folded back. The symmetric patiern which

results indicates that the lines are caused by hydrogen (see also Figure 5.7).
pattern around the nuclear Zeeman frequency of hydrogen, indicating that the source
for the resonances is hyperfine interactions with hydrogen. Figure 5.7 shows the
magnetic-field-dependence of a typical line of Figure 5.6. In this way the chemical
identity of the involved nucleus can be determined: the position of the lines in Figure

5.6 follow the relation for a general ENDOR frequency caused by hyperfine interactions

of the nucleus with the electron spin
v = gyt B £ mgAlh. (5.1)

In equation 5.1 the only field-dependent part is the first term; the nuclear Zeeman
frequency. The field dependence shows the nuclear moment and the relative magnitude

of the nuclear Zeeman and the hyperfine interaction:

dv
E = igN#N/h- (52)

If the sign in equation 5.2 is negative, the hyperfine interaction is larger than the nuclear

Zeeman interaction, otherwise it is smaller. In this way Figure 5.7 shows that the « line
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in Figure 5.6 is caused by small hyperfine interactions with hydrogen. The magnitude
of the interaction (A = 1.184 MHz) indicates a very low paramagnetic electron density
(0.083%) on this site ! Large interactions were not found, neither for hydrogen, nor for

silicon.
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Figure 5.7 Position of the ENDOR line a of Figure 5.6 for magnetic fields
of 824.81 mT (a), 824.50 mT (b) and 825.10 mT (c). This closely follows
the dependency expected for hydrogen (42.5759 MHz/T [3]) as indicated by the

heavy-dotted straight line in the right part of the figure.

5.3 Discussion

To understand the experimental data the most obvious explanation would be to ascribe
the side and central lines to totally different spectra, possibly not even related to
the same defect. This would readily account for the fluctuation in intensity ratio.
However, this model can easily be put aside if one bears in mind that 1) the spectra
have identical g tensors and 2) they show exactly the same electron nuclear double
resonance (ENDOR), which can only be explained if we assume that the parts of the
spectrum belong to the same defect.

There are still several possibilities for the nuclear spin configuration. The spectrum
can be attributed to a combination of two spectra: one without hyperfine interaction

because of the absence of nuclear spins in the defect (I=0) and one with ligand hyperfine

see appendix C for a derivation of the LCAQ parameters for hydrogen
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interaction with neighboring 2°Si atoms. Although there would be no problem with
fitting of the parameters of such a model to the observed line positions, there 1s a
problem with explaining the intensity ratio of the two spectra which is changing from
1:3 to a ratio as high as 1:200, as mentioned before. If one takes into account the
fact that 2°Si has a natural abundance of 4.70% the expected intensity ratio is 2.46%
(1:40.6) if there is one silicon atom in the interaction shell. The experimental data are
contradicting this. Apart from this, a drifting intensity of a silicon ligand spectrum has
never been observed before, which makes the assignment of the large HF splitting to
silicon irrational. For Figure 5.3 the experimental conditions accidentally produce an
intensity ratio close to the value expected for 2°Si. Figure 5.4 shows that the intensity

ratios can be quite different.

1 1 T 1
<111>
°
0
@
d
0
£
<
m - . v
&, Figure 5.8 Detail of the Si-
& NL52 spectrum as acquired at the
K-band spectrometer. The scan
. . . ) shows the splitting of the HF
835 836 837 838 structure at the <I111> field di-
Magnetic Field (mT) rection due to HF interactions

with atomic hydrogen.

The involvement of a guest atom other than hydrogen in the defect is even more
unlikely, since the starting material was undoped. Further, the same arguments can
be used against this model as for the case of silicon. This leaves the possibility of
hydrogen as the source for the large HF splitting. One hydrogen atom is not enough
because this would give rise to a spectrum of two patterns (hydrogen has a nearly 100%
abundant isotope with 1=1/2). Two atoms are needed to comply with the data. If
one assumes a weak coupling between the two hydrogen atoms one would, in principle,
expect 4 lines when the field is parallel to the <100> axis. But when the two atoms are

exactly equivalent the middle two lines would coincide. The second-order effect (~ A?)
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splitting (0.04 mT) of the central two lines is smaller than the linewidth. The intensity
ratio of a side line (my, = my,) as compared to the middle lines (m;, = —m;p,) would
be 1:2 and stable. On the other hand, if we assume a strong coupling between the
two atoms, as is normal for isolated hydrogen molecules [5], there will be two possible
nuclear spin states, namely para-hydrogen with the nuclear spins anti-parallel (I=0)
and ortho-hydrogen with the spins parallel (I=1). The observed spectrum can then be
explained by assuming that it is a superposition of the triplet and the singlet spectra.
Because the para state has lower energy than the ortho state, with a difference of
approximately 180 K (for hydrogen in vacuum [5]), it will be (nearly) the only one
occupied at low temperatures. The fluctuation of the intensity ratios can now be
explained by a conversion from ortho- to para-hydrogen, and vice versa.

Closer inspection of the spectrum reveals an extra splitting of the spectrum, see for
instance the detail of the spectrum taken at a magnetic field along the <111> direction
(Figure 5.8). This may be caused by hyperfine interactions with two non-equivalent
independent (non molecular) hydrogen atoms. The existence of such elaborate centers
falls nicely into the model of hydrogen clustering as predicted by Zhang and Jackson
[6], among others. The interaction seems to be <111>-axial which indicates that the
hydrogen atoms are on the extension of the Hy molecule bond axis.

We can now ascribe the spectrum to a Hamiltonian

— — - —

H = ﬂsﬁ'g'S+S'AH2 IH2+SA|1'li}I+§Al2'| 'T%I) (53)
with S=1/2 and Iy, =1 for the triplet spectrum and Iy, =0 for the singlet spectrum. In

both cases Ij; = I# = 1/2. The values of the parameters, obtained by fitting to the

experimental data, are given in Table 5.2.

Table 5.2 Spin-Hamiltonian parameters for Si-NL52. <111>-arial symmetry.
term // 1 unit
g 2.00069 2.00951

AH2 217.8 128.2 MHz
Al 4.8 1.5  MHz
A 12.1 5.0 MHz
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Chapter 6

A possible new identification of the
P, defect

6.1 Introduction

The increasing number of devices on an IC is made possible by the continuing scaling
down of the structures. The ever decreasing dimensions make the two-dimensional
structures relatively more important with regard to the three-dimensional ones. This
explains the escalating interest in the physics of surfaces and interfaces of semiconduc-
tors. Since the dawning of the semiconductor age in the 1950’s, SiO; has never lost its
leading role of perfect material for isolation in silicon-based material. This is caused
by the many advantages of silicon oxide over other materials; it is nontoxic, has high
mechanical hardness and elasticity, has high stability under ambient conditions, has
high heat conductance, is cheap, has practically unlimited resources, can withstand
strong electrical fields of up to 8 MV /cm for years without being destroyed, and has
excellent isolating features because of the very high energy gap of more than 9 eV.
One can say that the properties of SiO; have finally tipped the scale over to silicon as
starting material for semiconductors. Other types of semiconductor have lost terrain
for the reason that they could not compete with the sublime qualities of the silicon
technology, leaving only extreme-conditions areas of the semiconductor spectrum to
more fancy materials like SiC and GaAs (see Chapters 2 and 3 of this thesis, respec-
tively). It may serve as an example that germanium, another material of the early
days of the semiconductor era, has a water-soluble oxide [1].

Defects in the oxide and Si/SiO, interface cause trapping of charges and thus forma-
tion of unwanted electrical fields, thereby influencing the carrier transport properties

and degrading the overall performance of the device. This defect formation may even-
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tually lead to a spontaneous occurrence of short-circuit in the insulating oxide and
a breakdown of the device. Evidently, it is of utmost importance to know the exact
nature of these defects, such as their formation kinetics and microscopic structure.
The most familiar intrinsic defect at the interface is the P, center, which accounts
for up to 100% of all electrical trapping [2]. Its electron paramagnetic resonance (EPR)
spectrum was first detected by Nishi [3] and subsequently attributed by Poindexter et
al. [4] to a silicon dangling bond stabilized normal to the <111> Si/SiO, interface.
Later, the same spectrum was found in oxygen-implanted silicon (SIMOX), where a
layer of silicon-oxide is created below the surface [5]. Also in the novel material porous
silicon (po-Si) the same spectrum was revealed [6]. This brought new interest to the

P, center as part of the quest for the explanation of the luminescence in po-5i.

6.2 Comparison of the P, and Si-NL52 spectra

In Chapter 5, an EPR spectrum with similar features as the Py, spectrum is described.
This spectrum was observed in an entirely different type of silicon [7]. The spec-
trum, labeled Si-NL52, was detected in high-purity (FZ), undoped, bulk silicon, after a
high-dose hydrogen implantation, followed by a short (20 min.), low-temperature heat
treatment (250 °C). A comparison of the two spectra reveals that they must originate
from basically the same microscopic structure.

When comparing the properties of the two spectra, one first notices that the spin
Hamiltonians are similar. Both have trigonal g tensors and contain a trigonal hyperfine
(HF) interaction term S - A - I, which combine into a total spin Hamiltonian H =
upB-g- S+ S-A-I, where up is the Bohr magneton, g the g tensor, A the hyperfine

interaction tensor, and S and I the electron and nuclear spins, respectively.
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Figure 6.2 Angular dependencies of the electron paramagnetic resonance at
v = 23.2 GHz, for a spin Hamiltonian as described in the text and with spin-
Hamiltonian parameters as given in Table 6.1. The thick trace is Si-NL52,
whereas the thin trace represents Py. The place of the FSE scan of Figure 6.12
is indicated by a dashed line. The typical linewidth of Si-NL52 of 0.9 mT 1s
indicated.

The g tensor is nearly equal for the Si-NL52 and P, spectra. But this is not sufficient
to prove their equivalence. Figure 6.1 shows that many trigonal centers have g tensors
in this region. It is the first of a list of similarities of Si-NL52 and Ps. The magnitude
of the anisotropic part of the electronic Zeeman interaction is slightly different for the
two centers (see Table 6.1). One has to bear in mind here that the spread in g factors,
as found in the P, literature, is substantial. The value of g seems to depend strongly on

the exact type of material studied [5]. Stesmans has shown that stress, present in the
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environment of the defect, influences the g value significantly [9]. In the light of this,
the deviating value for ¢,ns, as observed in the current study can be explained with
the assumption that a different (e.g. oxygen-lean) environment is created by the ion
implantation. Figure 6.2 illustrates the similarity of the spectra by showing simulations

for the Hamiltonian with the parameters of Si-NL52 and P,.

Table 6.1 Comparison of the spin-Hamiltonian
parameters for the Si-NL52 and P, spectra.

spectrum | term I 1 error  unit | Ref.
Si-NL52 | g 2.00069 2.00951 +0.0002 (7]
Age (1) 218 128 +2  MHz
P, p 2.0016  2.0090 [10]
Aup (2) 438 255 MHz
Ape (1) 219 127 MHz
P, g 2.0012  2.0081 1]
P, 2 2.0014  2.0086 [9]

(1): Assuming I=1.
(2): Assuming I=1/2.

The hyperfine interaction tensors (A) are remarkably close for the P, and Si-NL52
spectra, when taking into account the nuclear spin used in the models (/=1/2 and
I=1, respectively). For further discussion, it is important to recall the actual reasoning
behind the assignment of the hyperfine interaction for both spectra. In the case of the
P, spectrum, the ascription to ?°Si is essentially based on the observed intensity ratio
of HF satellites (*°Si, I=1/2) to the central line (*®*Si+°°Si, I=0). This should closely
follow the natural abundance of *Si (4.67%) and should result in a HF line intensity
of 2.45% (ratio 1:40.8), as compared to the central line '. This interpretation also has
as an essential element that, in this model of a dangling bond connected to a single
silicon atom, the number of "equivalent” silicon atoms in the largest HF interaction
shell is one. The observed ratios sometimes do come close to this value (1:67 [10]), but
also ratios as deviating as 1:100 are commonly reported in the literature [12, 9]. In Ref.
[10] this mismatch is recognized, but attributed to a possible loss of signal due a poor
signal-to-noise ratio, as well as line broadening of the hyperfine satellites. The lack of
reasonable alternatives for the HF interaction (the mismatch for 7O or **C would even

be bigger) then led to the assignment to ?°Si.

!See appendix B for a derivation of the hyperfine line intensities
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Figure 6.3 Power dependence of the Zeeman (x) and HF (+) lines of the
Si-NL52 spectrum. The integrated single HF line to Zeeman line ratio is in-
dicated with O’s. This ratio is changing dramatically even outside the range
of saturation (P, < —20 dBm). The solid lines are fits using the equations in
subsection 6.5.1.
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Figure 6.4 Two scans of the Si-NL52 EPR spectrum for the magnetic field
along <100>. The thick trace was taken at 5.2 K, while the thin trace was

taken at a temperature of 11.4 K. A clear change of relative intensities is
observed.
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On the other hand, the assignment of the HF interaction lines to H, in the case of
the Si-NL52 center is partly based on the observed variable intensity ratios [7]. The
current study on this subject revealed that the observed ratio depends on temperature,
microwave power and frequency in a complicated way. Ratios as high as 1:3 have
been observed. In Figure 6.3 a power dependence of the intensity of the individual
components of the Si-NL52 spectrum is shown, while in Figure 6.4 two scans, taken at
different temperatures for the same microwave power, are depicted. This excludes the
possibility of the HF lines as arising from silicon. In Ref. [7] the Si-NL52 spectrum
is attributed to the superposition of the triplet and singlet spectra of the ortho- and
para-form of a hydrogen molecule, respectively. The variation of the ratio of the two
spectra is identified as a conversion between para- and ortho-hydrogen. In the present
study alternative causes for a varying ratio have been studied exhaustively and will be

discussed in section 6.3.

6.3 Intermezzo: Spectrum distortion

6.3.1 Saturation of the EPR lines

The most obvious reason for the distortion of the EPR spectrum would be high mi-
crowave power. Figure 6.3 shows that saturation cannot be the cause for the anomalous
behavior of the line intensity ratio, since this is changing dramatically even before sat-
uration sets in. Apart from this, all parts of the spectrum would be equally affected by
the saturation. Normal EPR saturation cannot explain the non-uniform distortion as
observed for Si-NL52. A non-uniform, asymmetric distortion is discussed in the next
section. Upon closer inspection Figure 6.3 discloses some interesting details.

For homogeneously broadened lines, for low microwave powers the signal intensity
is directly proportional to the amplitude of the applied microwave field (B;), thus pro-
portional to the square root of the power. When saturation effects become important

this dependence becomes [13]

S2B1
— 6.1
Y X T (6.1)
where s is the saturation parameter,

with 7y and 75 the spin-lattice and spin-spin relaxation times respectively, and v =

2mgp,/ k. For low powers s is approximately unity, and Equation 6.1 reduces to a form
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where y is proportional to B;. For high powers the saturation parameter is inversely
dependent on the power, s o< By %, and the signal is therefore decreasing upon increasing

power:

y O({ Bl fOI’Bl —)0, (63)

B? for By — oo.

For inhomogeneously broadened lines, the low-range microwave power dependence is
equal to that of homogeneously broadened lines. In the high-power range, the signal

saturates to a constant value [14]. For this case

y o Biy/s, therefore (6.4)
B1 for Bl — 0,
y { constant for B; — oo. (6:5)

These two cases are drawn in Figure 6.5.

Inhomogeneously
Broadened
Line
N
<
=)
&l
o i
n
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Figure 6.5 Power dependence of homogeneously and inhomogeneously broad-

ened lines.

Figure 6.3 reveals that the hyperfine components of the Si-NL52 spectrum closely
follow the power dependence as described above for homogeneously broadened lines.
On the other hand, the Zeeman component for low powers is not proportional to By,
but instead to v/B;. In analogy of a two photon process, i.e., a transition from one
level to another that requires two-photons instead of one, which has a linear power

dependence (y o« B?), or, in general, a multi-photon process where y o< Bf, this can
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be called a half-photon process. The exact implications and underlying physics of such
a statement are not clear at this moment.

Since, for low powers, the Zeeman line intensity is proportional to /P and the
intensities of the hyperfine components are proportional to V/P, the ratio of Zeeman:HF
follows the dependence r = I/W. For higher powers the ratio does not vanish. Instead

it goes to a steady value rq:
r= rl/W + Too- (6.6)

Fitting of this dependence to the measured ratios gives the value ro, = 2.04 & 0.1.
This value is close to what one would expect for two independent, equivalent hydrogen
atoms (see previous chapter); namely a central line which is twice bigger in intensity
than the HF lines. Apparently, the high microwave power decouples the two atoms
in the hydrogen molecule. The power dependence for the Zeeman line does not follow

equation 6.1, but instead

2
S
YZeeman X m( V Bl + 2B1) (67)

For very low powers, the ratio is expected to deviate from the relation of equation 6.6.
Instead of going to infinity this ratio is expected to reach the thermal equilibrium value
of the para- to ortho-hydrogen ratio [15].

To summarize, saturation cannot account for the anomalous ratio changing, since
this ratio already changes outside the range of saturation, while the exact microwave
power dependence points to the involvement of two hydrogen atoms; for high powers

the Zeeman:HF ratio approaches 2.0, as expected for 2xH.

6.3.2 Nuclear core polarization

The intensities of the hyperfine satellites often lead to the identification of the nucleus
involved, as is demonstrated in appendix A. On the other hand, the experimental
conditions, such as illumination or saturation of the EPR signals may lead to deviations
from these expected intensity ratios. Overhauser [16], Kittel [17] and Korringa [18]
predicted a polarization of the nuclei caused by saturation of the EPR signal, which
was observed by Carver and Slichter [19]. Feher [20] extended this theory to population
inversions generated by illumination which was indeed observed by Konchits et al.
[21]. In both cases the electron spin needs to be coupled to the nuclear spin through a

hyperfine interaction contributing to a total Hamiltonian

H = guB§-§ + AS-T + QN#NE-T. (6.8)
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For S=1/2 and I=1, the level diagram is drawn in Figure 6.6. At low temperatures (4
K) and nominal field strengths (800 mT), the spin systems preferably are in the lowest
three levels (mg=-1/2), with a negligible inhomogeneity in the distribution over the
different nuclear states. The ratio of the occupancy of the lower levels and the higher

B/kT ~ 1.3. The most important

levels is determined by the Boltzmann factor x = e9#5
relaxation for the electron spins is the cross-relaxation (Ax) in which a simultaneous
flip of the electron and nuclear spins occurs, thus obeying the spin conservation law.
Apart from this relaxation also electronic (Ag) and nuclear (Ay) relaxations are to be

considered, although they are of less importance.

7 @ mg=—%, m~—-+1
A

ﬁ‘e s ~(5) mg=', m=0
Al L

" ; {‘D mg=2%, m=—1

ms=— %, m~—1

=-X 3‘:' @ mg= — ¥, m=0

J\D mg= — %2, m=+1

Figure 6.6 Level diagram of the Hamiltonian as in the equation 6.8. The
relazation paths are indicated with Ay, Ag and Ax for nuclear, electronic and
cross-relazations, respectively. Resonant (EPR) transitions are labeled with Ap

The equations which discribe the time dependencies of the populations of the levels

are
AN, /dt = An(No-Ny) + Ag(2Ne-N1)  + Ax(2Ns-Ny),
dN;/dt = Aw(Na-N) - Av(Ne-Np) 4 Ap(aNsNy)  + Ax(zNyNy),
dNa/dt = — An(Na-Ny) + Ap(Na-Na), (6.9)
dN,/dt = Aw(Ns-Nj) Cp(ENeNg) - Ax(aNeNy),
dNy/dt = An(Ne-Ns) - An(Ns-Na) = Ap(zNs-Ny)  — Ax(eNs-Ny),
dNG/dt = - )\N(Ng-N5) — )\E($N6 )

Without an external resonant (microwave) field, the steady-state solution of this

coupled set of equations is the thermal equilibrium distribution, as described before:
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N,;=N,=N; = zN/(3+3z) and Ny,=N5=Ng = N/(3+3z), with N the total number of
paramagnetic spin systems. When the external field is resonant, two extra terms are

added. For example, the resonance 16 gives an extra transition:

(AN, /dt)’ = dN,/dt + Ap(Ne — Ny), (6.10)
(dNg/dt)’ = dNg/dt — Ag(Ng — Ny),

where g is the quasi relaxation, depending on the power of the applied microwave

field. The intensity of the EPR signal is linearly proportional to the number of resonant

transitions:
Igpr ~ Ar(Ns — Np). (6.11)
AN— O
=
2
n
Ar=0.1
41
R
’ J\
16 2«5 3«4 .
) : ) ! 1 ) N Figure 6.7 Low-power spectrum
800 820 840 860 (top trace) and saturated spectrum
Magnetic Field (mT) (bottom trace). The nuclear spin s

polarized by the microwaves.

As an example, the numerical solution of the equations as described above, with
values =4 Ay=10"¢, Ag=10"%, Ax=10"2, and Ap=0.1, yields an EPR intensity ratio
of 1.55:0.86:0.59. The saturation of the EPR lines distorts the normal ratio (1:1:1) in
an asymmetrical way. In Figure 6.7 this distortion is depicted in comparison with the
low-microwave-power spectrum, while Figure 6.8 draws the line intensities as a function
of the stimulated-transition probability, which is a measure for the microwave power.
Other parameters of the relaxation times Ay, Ag, and Ax will give different ratios, but

the asymmetry always remains.
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The Si-NL52 spectrum does not show this asymmetrical spectrum distortion, there-
fore nuclear core polarization can be excluded as the source for the anomalous behavior

of the hyperfine lines.

6.3.3 Defect band formation

Another source for spectrum distortion, which can be encountered for higher concen-
trations of the defect, is defect-conduction band formation. In that case, a single
(isotropic) Zeeman resonance, with a different g value is expected for these conduction
electrons [22]. As an example, Figure 6.9 shows the change of the signal of phosphorus-
doped silicon with the increasing of the phosphorus concentration. The spectrum itself
is independent of the applied microwave power when the individual parts, the phospho-
rus donor signal and the defect-band electron signal, have the same power dependence.

No defect band is formed in the samples used for studying Si-NL52. Here all

components have the same, anisotropic, g factor, deviating from the free-electron value.
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Figure 6.9 Change of the EPR signal
as a function of the phosphorus con-
centration in silicon. The concentra-
tions range from 7-10 cm™ (top) to

3-10® cn ™2 (bottom). After Feher [22].
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6.3.4 Motional averaging

A defect with a certain symmetry has, generally speaking, several possible ways to be
embedded in the crystal. These possible realisations are called orientations and are, in
the absence of external forces like uniaxial stress, etc., equally occuring in the crystal.
Each orientation has its own dependence on the magnetic field angle, and thus a set of
branches results in the angular dependence. A trigonal defect may serve as an example.
This has a 3-fold axis, and since the silicon lattice has four such axes, there are four
possible realisations in the crystal. An angular pattern with four branches results.
For low temperatures, hopping between two orientations is not possible; the threshold
of this process is too high. When the temperature is increased and the activation
energy of the hopping is not too high (which especially is likely to be the case for
interstitial defects), this might occur. If this hopping has a relaxation time shorter
than the microwave period, effectively the symmetry of the defect is higher, because
the interaction tensor (e.g. g) is averaged. In the spectra, this is visible by first an
appearance of resonance between the distinct orientations and, for higher temperatures,
the disappearance of the original spectrum and the presence of a spectrum with higher
symmetry.

This is not observed for Si-NL52. First, the effect described above is independent
of the applied microwave power, while the anomalous intensity behavior of Si-NL52 1s
strongly dependent on P,. Second, the central part of the Si-NL52, which is relatively

increasing for higher temperatures and lower powers, has the same symmetry as the
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satellite components. Motional averaging can be excluded as a source for intensity-ratio

changing.

6.4 Superhyperfine structure

Now that the large hyperfine interaction has extensively been discussed as arising from
molecular hydrogen, a more detailed examination of the spectrum is worthwhile. A
closer inspection of the Pj spectrum resolved extra superhyperfine (SHF) structure,
arising from the interactions with ligand silicon atoms [12]. The axial SHF tensor,
with a principal axis along <111>, has an isotropic part A, = 1.6-1.8 mT (45-50
MHz) [10, 23, 24]. The added intensity of these two SHF lines, as compared to the
central line is approximately 10-15% (5-7.5% for a single line), ”consistent with an
assignment to two or three neighboring atoms” [12]. This SHF structure was then
attributed to the shell of three next-nearest (or next-next-nearest [25]) neighbors in
the model of trivalent silicon. A graphical presentation of the discussed models for P,
is given in Fig. 6.10. Indeed, in such a model one would expect three atoms in the
second shell, but the symmetry of the resulting interaction would have been monoclinic,
instead of the observed trigonal symmetry reported in Ref. [12]. Moreover, whereas
the intensity ratio for the SHF structure is discussed at a considerable length and
meaningful conclusions regarding the number of silicon atoms are drawn, the fact that
at the same time the intensity ratio for the largest hyperfine structure, also related to
29Gj and simultaneously measured, is at least 2.5 times smaller than the value expected
for the model, is not commented upon [12]. This inconsistency should not be overlooked

since it might indicate a different nature for the two interactions.

® 1xSi HF ! 1xH, HF

® 3xSi SHF ® 2xSi SHF

O other Si O other Si
dangling bond ; H, model

model ®

Figure 6.10 The old (left) [25] and proposed new model (right) for the P,
center. The various shells of HF interaction are indicated. For simplicity the
further environment (e.g. 5i10,) is not shown.
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The complicated nature of the Si-NL52 EPR spectrum does not permit a similar
analysis of the SHF interaction directly. This is due to the fact that in the Si-NL52
spectrum a fourfold splitting of the lines has been observed which is caused by more-
distant hydrogen interactions [7]. Such a fourfold splitting increases the linewidth and
inhibits the precise observation of small-intensity hyperfine satellites. Fortunately, the
method of field-scanned ENDOR (FSE) [26] provides a way to decompose the EPR

spectrum into parts where the SHF structure is resolved.

Field Scanned ENDOR
Am=1 ]1
Amg=1

Ton EPR

/ &

Zeroon FSE

/\\

Magnetic field

Figure 6.11 The principle of Field Scanned ENDOR (FSE) illustrated for
S=1/2, 1=3/2. By looking at the intensity of an ENDOR line (indicated with
Am, = 1), as a function of the magnetic field, that part of the EPR spectrum
is reproduced that is connected to the ENDOR line.
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6.4.1 Field-scanned ENDOR

In FSE the intensity of an ENDOR (electron-nuclear double resonance) line is mon-
itored as a function of the magnetic field. The radio frequency (RF) is continuously
varied with the changing magnetic field, in order to constantly fulfill the resonance
(NMR) conditions. In this way only EPR signals which are connected to the particular
ENDOR line contribute to the FSE spectrum. This is shown in Figure 6.11

The result of a measurement for Si-NL52 is illustrated in Figure 6.12, where EPR
and FSE scans are shown together for an angle of 85° in Fig. 6.2. The advantage of us-
ing the FSE technique is immediately evident. First, part of the spectrum (between 826
and 829 mT) is removed, because it does not belong to the defect orientation connected
to the particular ENDOR line. In addition to this, the line shape is significantly sim-
plified and now pronounced ?°Si hyperfine structure is revealed. The outermost SHF
satellites correspond to an effective hyperfine interaction of approximately 45 MHz,
equal to the value obtained by Brower [10, 23], and in good agreement with Carlos [12]
for the field in this specific direction. This again provides evidence for the equivalence
of the Si-NL52 and P, spectra. Due to the increased resolution, the intensity of a
satellite can now be accurately measured and is found to be 5% of the central line.
This indicates the presence of two equivalent silicon atoms in the shell, rather than
three. This is inconsistent with the old P, model. On the other hand, the intensity
as well as the symmetry of the SHF structure can readily be understood in terms of
the model which was originally used for the Si-NL52 center. Here the interstitial hy-
drogen molecule is oriented along a <111> direction, exhibiting D3s symmetry. The
SHF lines can then be attributed to the interaction of the electron spin with the two
first-neighbor silicon atoms on the extended H-H bond axis (see Fig. 6.10). Such an
interaction has trigonal symmetry, as indeed experimentally observed for P, [12].

The FSE spectrum also reveals a second shell of SHF interactions. The intensity
of these lines is more difficult to estimate, since they are positioned on undetermined
backgrounds of the central line, and, as well, may interfere with possible other shells
of nuclei with SHF interactions of comparable magnitudes. Therefore it is, at this
moment, difficult to ascertain the true number of silicon atoms in this shell.

The last interesting feature of Figure 6.12 is the fact that a small peak is observed
in the high-field range (~829.6 mT), which coincides with the EPR line of the large
ortho-hydrogen hyperfine interaction. The intensity of this line is exactly scaled to
the corresponding EPR line. In other words, the FSE/EPR intensity ratio for the
line around 825 mT is equal to FSE/EPR ratio for the line around 829.6 mT. This
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is a direct proof that the central and side lines as indicated in Figure 6.2 are indeed

connected; they belong to the same center, because they have the same ENDOR line.
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Figure 6.12 Field Scanned ENDOR (thin trace) at 85° (see Figure 6.2) show-
ing well-resolved *°Si hyperfine interactions. The FSE technique has isolated
a clean spectrum as compared to the EPR scan (thick trace). The ENDOR
transition which was used in the FSE spectrum was a typical hydrogen line
(35.78900 MHz) for a magnetic field of 824.93 mT at a microwave frequency
of 23.202344 GHz. The correction for the constantly changing nuclear Zeeman
frequency was 42.5758 MHz/T. During the FSE experiment, the temperalure
was kept at 12.4 K.
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Summarizing, it has been shown that the Si-NL52 and P, spectra can be described
by the same spin Hamiltonian and have very similar g tensors as well as equal HF
and SHF parameters. In addition to that, both the P, and Si-NL52 spectra show the
same anomalous varying intensity ratio of central-to-side-lines. This confirms that both
spectra correspond to defects which have basically the same structure.

At the same time, new experimental evidence challenging the arguments behind
the (present) identification of the P, center as a silicon broken bond was presented;
namely it was shown that the varying intensity ratio of the large hyperfine interaction
components is a characteristic feature of the spectrum and cannot be attributed to
spectroscopic or experimental peculiarities [10]. Further, by a precise measurement
of the intensity of the biggest SHF interaction, whose line intensity behaves in the
usual manner, we concluded that the nearest-neighbor shell contains only two silicon
atoms. This result contradicts the current interpretation of the P, center. On the other
hand, the 2-atom shell is fully consistent with the model of a <111>-axial H; molecule
occupying an interstitial site halfway between the two silicon atoms along the axis of
the defect, as proposed for the Si-NL52 spectrum.

In view of the above, one is likely to conclude that, whereas some of the questions
concerning the Si-NL52/P,, center are still unanswered - such as its hydrogen passivation
- its identification as a trivalent bonded silicon atom cannot be sustained. As an
alternative, the P, center might be generated by paramagnetic H, molecules trapped
at the Si/SiO, interface. Such an identification is also supported by reports of a

prominent presence of hydrogen at such interfaces [27].

6.5 Critical remarks

While the above description can explain many aspects of the Si-NL52 spectrum and
hence of the P, center, many questions still remain unanswered and some data con-

cerning the spectra are difficult to understand. Some of them will be mentioned here.

6.5.1 Oxygen in the defect structure

The most obvious difference of Si-NL52 and P, is their production conditions. P,
is observed in oxygen-rich materials, such as Si/SiO; interfaces, or oxygen-implanted
bulk silicon, or oxidized (porous) silicon, while Si-NL52 is observed in oxygen-lean,
hydrogen-implanted, bulk silicon. The difference might be that in Si-NL52 (atomic)

hydrogen has taken over the role of oxygen in P, of trapping, stabilizing and activating



100 Chapter 6

the (molecular) hydrogen. This could then also explain the small experimental dis-
similarities such as the difference in line shape (fourfold splitting for Si-NL52) or the

minute deviations of the g tensor.

AA

1106 cm™!

3500 3000 2500 2000 1500 1000 500
Czochralski ' ' ' ;

Transmittance (a.u.)

3500 3000 2500 2000 1500 1000 560

Float Zone

. . . w‘-d
3500 3000 2500 2000 1500 1000 500

Wavenumbers (cm™)

Figure 6.13 Infrared absorption spectrum of the sample containing Si-NL52
(AA). For reference similar spectra of Czochralski and Float Zone silicon are
shown. The 1106 ¢cm™! absorption band, caused by a vibrational mode of an
ozygen atom bound to two silicon atoms, can be used for the determination of
the ozygen concentration.

On the other hand, it cannot be excluded that the oxygen is introduced into the
crystal during the hydrogen implantation. Under normal conditions, oxygen has a
very small diffusion coefficient (D = 0.11exp{—2.51eV/kT} cm?/s), but it has been
reported [28] that this can be greatly enhanced by the presence of hydrogen. Indeed,
the first (FZ) sample which was used in this study contained a substantial amount
of oxygen. Figure 6.13 shows the infrared absorption spectrum of the first sample.
The oxygen concentration can be estimated from the absorption coefficient at the 1106

cm~! band at room temperature [29, 30]. The transmitted IR light (I) will follow the

equation
I = Ipe ™, (6.12)

with d the sample thickness, A the absorption coefficient, a.nd I, the background trans-
mittance. The measured values d = 0.085 cm, Iy = 13.9%, and I = 12.3% then produce
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a value for A
Iy 1
A= IH(T)/d =14 cm™ . (6.13)

This value can be correlated to a total oxygen concentration of approximately [O] =
4-10'" cm™2 [30]. This is rather high for originally float-zone material, which should
have an oxygen concentration in the range 10*® cm™3. The validity of this measurement
is doubtful, since for untreated high-quality float-zone silicon, the oxygen concentration

estimated with this method was [O]pz = 9 - 10.

6.5.2 LCAO analysis

Usually the hyperfine parameters can give information on the local density of the
wavefunction of the paramagnetic electron at the nuclear site. The magnitude of the
isotropic part of the hyperfine interaction (%TT‘A) is proportional to the amount of elec-
tron in s-wavefunction, while the anistropic part represents density in higher orbitals
(p, d, f, ... ). It can be calculated that a complete electron in an s orbit on a hydrogen
atom would generate an isotropic HF interaction of 1423 MHz, while a complete p
electron would result in an axial HF tensor with main-values 2b, b, b, with 6=8.9 MHz
(see Appendix C for a derivation of these values). The observed HF interaction param-
eters (Ajso = 157, Aaniso = 30 indicates 11.1% of an electron in an s-orbital and 340%
in a p-orbital. These numbers have to be multiplied with two, because there are two
atoms in the interaction shell. This yields extremely large values. The question rises
if LCAO analysis can be applied when hydrogen is involved, since this can basically
not even explain anisotropic HF interaction. Anisotropic interactions can only be the
result of p-orbitals (or higher) and these states are much higher in energy compared
to the not completely filled s-states of hydrogen. Though such interactions have been
observed for hydrogen. To explain the anisotropic part of Si-AA9 94% of a p-electron
is needed on the hydrogen core [31]. The case for Si-NL52/P; is more extreme, but
one also has to bear in mind here that the interacting species is molecular hydrogen,
and it is not exactly clear what the molecular orbits on Hy will produce in the LCAO
model. On basis of the HF (H;), SHF (?°Si), SSHF (H) magnitudes of Si-NL52, which,
in the model all originate from interactions with nuclei on the <111> axis, a plot of
the density of the wavefunction at the various sites on the <111> axis can be made.

This is shown in Figure 6.14.
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Figure 6.14 A plot of the s density of the wavefunction on the <111> axis.
Thes shows the smooth decay in space. The percentages in the bottom of the
picture are derived from the Hamiltonian parameters (H) or from the FSE scan

(Si).

The HF parameters of Table 6.1 can also be used with the assumption that the
interacting nucleus is ?°Si, as in the old P, model. In that case the observed values
(A = 438 MHz, A; = 255) correspond to 6.9% of an electron in an s-state around
the silicon nucleus and 53.4% in p-state [32]. This fits well in the model of a dangling
bond on a silicon atom where the paramagnetic electron resides (mainly) in the sp®

hybridized state, which is for 75% p-wave function and 25% s-wave function.

6.5.3 Deuterium implantation

A direct proof for the involvement of molecular hydrogen in the structure can be
obtained from a simple experiment. Instead of hydrogen, deuterium can be taken as
implantation species. The nuclear spin of deuterium is different (/=1 for D, /=3 for
H). Also the hyperfine interaction parameters are different. Since the nuclear g-factor
(g, ) 1s 6.5 times smaller for deuterium, the expected distances between the HF lines are
expected to be 6.5 times smaller, if the electronic wavefunction is unaltered. Together
with the changing of the number of HF lines, a clear, predictable change of the spectrum
is expected. In the current study a deuterium-implanted sample with a similar dose
was examined. The scans showed many resonances. The most prominent ones belonged

to the Si-NL52/P; spectrum with unaltered HF structure, i.e., with identical HF line
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distances. On the other hand, a changing of the lineshape is observed. The small
fourfold splitting of the lines due to interactions with monatomic hydrogen in the case
of Si-NL52 (see previous chapter), was changed into a much narrower line in accordance
to the above-decribed theory.

Apart from the unaltered Si-NL52 spectrum, a spectrum with smaller intensity
(approximately 10x ) and with less distant HF lines was observed. This spectrum could
be identified with a defect, identical to Si-NL52, but with the H, molecule replaced
by an HD molecule. In this way, the expected intensity of the DD-molecule based
spectrum is only about 1%. Since also the splitting is much less, causing it to be
hidden by the Zeeman lines, no observation of the DD-molecule spectrum is expected.

Indeed, none was observed.

Table 6.2 Comparison of the hyperfine interaction parameters for H and D.

H D
I : 1
/. 5.58536 0.857386
Zeeman 42.5759 MHz 6.53566 MHz !
HF:1s 1423 MHz 218 MHz ?
50.8 mT 778 mT 2
HF:2p 8.9 MHz 1.36 MHz 2
1'at 1000 mT ? for g=2.0023

To explain the presence of the HH spectrum there are two possibilities. Either the
hydrogen was already present in the crystal before implantation, and the implanta-
tion only activated it, or the deuterium atoms in the molecule are slowly replaced by

hydrogen atoms. The latter seems most likely.
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Appendix

A Fundamental physical constants

fy = 5.0507866 - 10727 JT~!
py = 9.2740154 - 107 JT-!
p, = 4m - 1077 NA—?
@, = 9.2847901-1072¢ JT!
1, = 1.41060761 - 10-26 JT-1
g, = 2.002319304 .

h = 6.6260755 - 10734 Js

c = 2.99792458 - 108 ms™!
e=1.60217733-10"* C

ao = 5.29177249 -107'* m
m, = 9.1093897 - 10~ kg
my, = 1.6726231 - 10-%" kg

*: free electron g, = 2u, /1,

from ”Symbols, Units, Nomenclature and Fundamental Constants in Physics”, pre-
pared by E.R. Cohen and P. Giacomo, 1987 revision.
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B Hyperfine interactions with isotopes

In electron paramagnetic resonance studies often hyperfine interactions with nuclear
spins are observed. These spins are connected to the nucleus of the atom. Not every
isotope of this atom has the same nuclear spin. The distribution of spins, as set by
the natural abundances of the isotopes, causes a characteristic pattern of the hyper-
fine lines. The analysis of this ”fingerprint” often enables the determination of the
nucleus (nuclei) involved, and the number of nuclei in the shell of the interaction under
consideration.

The isotropic Zeeman interaction of the paramagnetic electron (S=1/2) with the
external magnetic field (B) can be expressed in the spin Hamiltonian: Hzeeman =
gupB - S. This will give rise to a single line with (relative) intensity 1 (Co = 1). A
nuclear spin (1) which interacts with the electron spin causes a splitting of the spectrum
due to the added term in the spin Hamiltonian Hpyperfine = AS - I. The total intensity
of the spectrum remains the same, therefore, each line of the multiplet gets an intensity
1/(21+1). We can put this in operator form. The operator X working on the intensities

— -
vector C, generating a new vector C' = X/, where

) 141 1
= o) 1
Cz ];IQI‘*-].CJ’ (B )

where i and j can take even and odd values, though in the summation the step 1s 1.
If the abundance of the isotope with nuclear spin I is taken into the calculation, then
only this amount of the spectrum is spread, the rest is left unaffected. Assuming the
abundance is a,, this can be expressed as

. i+,

C~ = ——I—C + l1—a 5,"01'. B.2

? J:;_I 2] + 1 J ( I) J ( )
If more than one atom is involved, then the operator X has to be iterated as many
times as there are atoms in the interaction shell

—

cr = X~C. (B.3)

The procedure is now to start with a seed vector (C;=0 for i#0 and Co=1) and generate
the expected spectrum with equation B.3. For atoms with more than one isotope with
I+£0, this can be calculated on the condition that the gyro-magnetic moments g, of the
isotopes are (nearly) equal, since the magnitude of the splitting is directly proportional
to the size of the hyperfine tensor, which in turn linearly depends on g,. In the Table
these results of this calculations for a variety of selected atoms with a number of shell
sizes are presented. The given line intesities are scaled to the strongest line (100%)
and lines with half-integral spin are written in bold, while lines with integral m, are
shown in normal typeface.
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nucleus 1sotopes fingerprint spectra
H I=1/2 100% 1x 100:100
P 2x 50.0:100:50.0
F 3x 33.3:100:100:33.3
4x 16.7:66.7:100:66.7:16.7
5x 10.00:50.0:100:100:50.0:10.00
6x 5.00:30.0:75.0:100:75.0:30.0:5.00
D W I=1  100% 1x 100:100: 100
N @) 2x 33.3:66.7:100:66.7:33.3
3x 14.3:42.9:85.7:100:85.7:42.9:14.3
4x 5.26:21.1:52.6:84.2:100:84.2:52.6:21.1:5.26
H, @ [I=0 25% 1x 50.0:100:50.0
I=1 5% 2X 16.7:66.7:100:66.7:16.7
3x 5.00:30.0:75.0:100:75.0:30.0:5.00
4x 1.43:11.4:40.0:80.0:100:80.0:40.0:11.4:1.43
C =0 98.892% | 1x 0.560:100:0.560
I=1/2 1.108% | 2x 0:1.12:100:1.12:0
3x 0:0:1.68:100:1.68:0:0
4x 0:0:00:2.24:100:2.24:00:0:0
155'¢ 0:0:0:00:2.80:100:2.80:00:0:0:0
6x 0:0:0:0:00:3.36:100:3.36:00:0:0:0:0
Al I=5/2 100% 1x 100:100:100:100:100:100
Mn 2x 16.7:33.3:50.0:66.7:83.3:100:83.3:66.7:50.0:33.3:16.7
Si 1=0 95.3% 1x 2.47:100:2.47
I=1/2 4.7% 2x 00:4.93:100:4.93 : 00
3x 0:0.182:7.38:100:7.38:0.182:0
4x 0:0:0.362:9.81:100:9.81:0.362:0:0
OX 0:0:00:0.601:12.2:100:12.2:0.601:00:0:0
6x 0:0:0:00:0.808:14.6:100:14.6:0.898:00:0:0:0
As I=3/2 100% 1x 100:100:100:100
Ga ©® 2x 25.0:50.0:75.0:100:75.0:50.0:25.0
3x 8.33:25.0:50.0:83.3:100:100:83.3:50.0:25.0:8.33
4x 2.27:9.09:22.7:45.5:70.5:90.9:100:90.9: ....
o: less than 0.01% of main line.
oo: 0.01% < C; < 0.1% of main line.

: Non natural abbundance.

: Equilibrium abundances at T=o0.
: More than one isotope with I=3/2; equal g, assumed.
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C LCAO hyperfine interaction parameters for hy-
drogen

From the hyperfine interaction magnitude and anisotropy, normally the local electron
density at the specific nucleus/nuclei can be calculated. In LCAO analysis, the para-
magnetic wavefunction is described as a linear combination of atomic orbitals [1]

U= ZWZZ’, (C.4)

with
¢ = iy + Bity, (C.5)

with ¢ and 1/)’ s and p electron wavefunctions respectively on the i-th nucleus. This
will then result in hyperfine interaction tensors (A;) with eigenvalues a; + 2b;, a; — b;
and a; — b;, where

2

a; = guoguagww?a?ws(ﬂ)lz, (C.6)
21
bi = 5 4 Ho9H G Nyl ﬁ2 <r >P . (C7)

If the type of the involved nucleus is known (see Appendix B), the appropriate value
for g, ¢, [2] can be substituted. The values for |45(0)]2 and <r73>, can be calculated.
The 1s orbitals on a hydrogen atom has the form [3]

Bo(r) = o =z, ()

Tag

with ag the Bohr radius = 0.529177249 - 1071% m. Therefore

|4(0)|* = 13—2148061 10%*m (C.9)

0

Substituting this in C.6, together with the value of the nuclear g-factor for hydrogen
(9 = 5.58536) and for the electronic g-factor the free-clectron value (g = 2.002319304)

gives a value for a;:

% = 1422.7 MHz/electron. (C.10)

The 2p orbital on a hydrogen atom has the form [3]

1 r
F) = —e "% 050 11
¥, (T) o aoe cos, (C.11)
therefore
<r 3> = /r—3¢;¢pdf (C.12)
= ! /r‘le_r/“°c0520.]drd0d¢, (C.13)
32mad
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where J is the Jacobian of the transformation to spherical coordinates,

J = r’sind. - (C.14)
This will result in [4]
<r¥>= 241a8 — 2.811805 - 10 m™2, (C.15)
and equation C.7 becomes
5 8.8920 MHz/electron. (C.16)

h

These values should be used with care, since the theory of LCAO can only be applied
if the wavefunction is (close to) a superposition of atomic orbitals. For the case of
hydrogen orbitals, the p-states are excited states and are not expected to be occupied.
Therefore, anisotropic hyperfine interactions with hydrogen can not be explained within
the framework of LCAQ, although they are observed experimentaly [5].

The calculation of |15(0)|* and <r7°> for other elements is not so straightforward,
but the results are tabulated in the literature [6].
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Summary
"Investigation Of Selected Centers In Semiconductors”

The work described in this thesis is concerned with the study of defects in selected
semiconductors. The first chapter gives an introduction to the application of group
theory in solid state physics. It shows how, with a minimal of information, important
conclusions can be drawn about the energy levels of the system. At the end of the
chapter, a closer look is taken at the symmetry covering operations of a defect, and
their implications to the magnetic resonance parameters. Here the restrictions to a
tensor, as imposed by the symmetry operations, are calculated.

In chapter 2 EPR experiments on silicon carbide are described. In some hexagonal
polytype SiC several new spectra were detected. A discussion is made of their spin-
Hamiltonian parameters: 1) SiC-NL1, a rthombic II spectrum with high spin (S=3/2)
and small crystal field interaction. 2) SiC-NL2, an isotropic spectrum. 3) SiC-NL3, a
rhombic I spectrum with strong hyperfine interactions.

Chapter 3 discusses the study of the DX center in binary and ternary III-V semi-
conductors. The metastable character of the center was proved by detecting photo-
persistent EPR (PPE) and photo-enhanced persistent EPR in AlGaAs with various
contaminants. With the determination of the strain-induced angular dependence of
the DX signal in an epitaxial layer grown on a substrate, an estimation could be made
of the magnitude of the valley-orbit splitting.

The last three chapters describe the extended study of hydrogen in silicon. Chapter
4 introduces the reader to some important aspects of this contaminant, like diffusion,
solubility and stable lattice positions. The last part of this chapter reviews a study of a
low-dose hydrogen-implanted float-zoned bulk single crystal. The EPR study revealed,
apart from the well-known Si-B3 and Si-A A1 spectra, also a new spectrum (S5i-NL51)
which is ascribed to the excited state (S=1) of a <100>-oriented defect. The presence
of hydrogen in the defect is expected, but could not be proved.

For higher concentrations, hydrogen is expected to cluster with as first stage di-
atomic hydrogen. In the next chapter (5) the theoretical models which predict the ex-
istence of a stable hydrogen molecule as most likely candidate for the diatomic species
are discussed. A report is made of the observation of a spectrum (Si-NL52) related
to such interstitial hydrogen molecules in high-dose hydrogen-implanted float-zone sil-

icon. The spectrum is identified with H, on the basis of the anomalous intensity ratio
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variations of its individual parts. Whereas the intensities of the hyperfine components
behave in a normal way - linear with microwave amplitude A, - the Zeeman lines show
deviating behavior, namely proportional to the square root of A,. The variation is
attributed to a conversion between ortho and para species of molecular hydrogen.
The last chapter (6) relates on the similarity of Si-NL52 with the P, spectrum. It
is shown that both spectra can be described with the same spin-Hamiltonian. Apart
from this, it is argued that the current model used for the P, center can no longer
be sustained. This model of a dangling bond connected to a single silicon atom is
replaced by the above described model of a hydrogen molecule. Sophisticated magnetic
resonance techniques, like field-scanned ENDOR (FSE), are described in the chapter
and are used to substantiate this model by determining the local environment of the

defect.

Samenvatting

» Onderzoek Aan Enkele Paramagnetische Centra In
Halfgeleiders”

Het werk beschreven in dit proefschrift is het onderzoek aan defecten in verschei-
dene halfgeleiders. Het eerste hoofdstuk geeft een inleiding in de toepassing van groe-
pentheorie in de vastestoffysica. Het laat zien hoe, met een minimum aan informatie,
belangrijke conclusies kunnen worden getrokken omtrent de energie niveaus van het
systeem. Aan het eind van het hoofdstuk wordt een overzicht gegeven van de symme-
trie operaties van kristallen en de gevolgen daarvan op de spinwisselwerkingstensors
van de Hamiltoniaan.

In hoofdstuk 2 worden EPR experimenten aan silicium carbide beschreven. In
een aantal SiC samples van hexagonale polytype werden drie nieuwe spectra ontdekt.
De bijbehorende spin-Hamiltonianen worden besproken: 1) SiC-NLI1, een rhombisch-
II spectrum met hoge spin (S=3/2) en kleine kristalveldopsplitsing. 2) SiC-NL2, een
isotroop spectrum. 3) SiC-NL3, een rhombisch-I spectrum met sterke hyperfijnwissel-
werking.

Hoofdstuk 3 handelt over het onderzoek van het DX centrum in binaire en ter-

naire halfgelciders. Het metastabiele karakter van het centrum werd bewezen door
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het waarnemen van lichtgeiduceerde, persistente KPR en persistent toegenomen EPR.
Door de bepaling van de hoekafhankelijkheid van het DX signaal in een epitaxiale laag
op een substraat kon een schatting worden gemaakt van de grootte van de vallei-baan-
opsplitsing.

De laatste drie hoofdstukken gaan over het uitgebreide onderzoek van waterstof
in silicium. Hoofdstuk 4 geeft een inleiding voor de lezer in de belangrijke punten
van deze verontreiniging, zoals diffusie, oplosbaarheid en stabiele roosterposities. Het
laatste deel van het hoofdstuk bespreekt een onderzoek aan een eenkristal dat met
een lage dosis waterstof is geiplanteerd. Het EPR onderzoek bracht, naast de bekende
Si-B3 en Si-AA1l spectra, een nieuw spectrum (Si-NL51) aan het licht. Deze wordt
toegeschreven aan de aangeslagen toestand (S=1) van een defect wijzend in de <100>
richting. Terwijl de aanwezigheid van waterstof wordt vermoed, kon dit niet worden
aangetoond.

Bij hogere concentraties zal waterstof gaan clusteren met als eerste stap diatomair
waterstof. In het volgende hoofdstuk (5) worden de theoretische modellen bespro-
ken die het waterstof molecuul als meest waarschijnlijke vorm voorspellen. Een ver-
slag wordt gedaan van een spectrum (Si-NL52), waargenomen in hoge dosis waterstof
geimplanteerd float-zone silicium, dat kon worden toegewezen aan zulke moleculen. De
toeschrijving aan H, berust of de afwijkende veranderingen van de verhouding van de
intensiteiten van de onderdelen van het spectrum. Terwijl de intensiteiten van de hy-
perfijn componenten zich op een normale manier gedragen, namelijk lineair athankelijk
van de microgolfamplitude A, vertonen de Zeeman lijnen een afwijkende afhankelijk-
heid (rechtevenredig met de wortel van A,). De verandering van verhouding van de
intensiteiten wordt toegeschreven aan een conversie van ortho- in para-waterstof en
vice versa.

Het laatste hoofdstuk (6) bespreekt de overeenkomsten tussen Si-NL52 en het P,
spectrum. Aangetoond wordt dat beide spectra met een en dezelfde spin-Hamiltoniaan
beschreven kan worden. Bovendien wordt beredeneert dat het huidige model voor Py,
een bengelende binding aan een enkel silicium atoom, niet langer stand kan houden.
In plaats daarvan wordt een model zoals hierboven beschreven voorgesteld. Moderne
resonantie technieken, zoals field-scanned-ENDOR, worden gebruikt om deze hypothese

te onderbouwen, door de plaatselijke omgeving van het defect te bepalen.
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