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The Meyer-Neldel rule (MNR)[1] is observed in many processes in nature. The two

main stream fields that are most affected by it are diffusion processes, where it is also

known as the Compensation Effect[2], and semiconductor conduction. Areas of semi-

conductors where the MNR is detected include: porous and amorphous silicon[3, 4],

microcrystalline silicon films[5], ionic conductivity[6], glassy materials[7] and organic

materials[8] in various devices such as charge-coupled devices[9], thin-film transistors[4]

and even superconductors[10]. The Meyer-Neldel rule for conduction processes states that

the activation energy for conduction can depend on various parameters ranging from the

(partial) pressure[11] to the bias. It is the latter, the dependence on bias, that we observe

frequently in our organic thin-film field-effect transistors and therefore focus on these ma-

terials and devices in the current work. The above listed materials all have in common an

abundant density of traps in a less-than perfect crystalline structure. We will show that

exactly this feature causes the observation of the Meyer-Neldel rule. Recently we have

proven that conduction in α-sexithiophene (T6) is governed by the traps[12] and with the

current work we demonstrate the direct link between the traps and the MNR.

The Arrhenius behavior of conduction states that the conductivity is depending on

the temperature in an exponential way:

σ = σ0 exp (−EA/kT ) , (1)

with EA the activation energy, k the Boltzmann constant and T the absolute temperature.

The empiric Meyer-Neldel rule states that the pre-factor σ0 depends on the activation

energy[8, 13]

σ0 = σ00 exp (EA/kTMN) , (2)

with σ00 a true constant and TMN the iso-kinetic temperature. This implies that 1) The

activation energy of current or carrier mobility depends on for instance the bias conditions

but 2) There exists a temperature, TMN, where the dependence on bias disappears. In an
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Arrhenius plot, the curves of current or mobility are straight lines that pass through or

converge to a common point not coinciding with infinite temperature. Using the theory

of Shur and Hack[14, 15] we will now show that an exponential distribution of trap states

results in an observation of the MNR.

Modern FETs differ from the standard inversion channel devices presented in text-

books in that they are often accumulation channel devices (the channel carriers are the

same as the bulk carriers) and they are thin films. Moreover, standard theory assumes

a low density of trap states. However, to define the effective mobility of carriers, the

standard equation is often used as a guideline. The field-effect mobility is defined via

the derivative of a transfer curve (Ids vs. Vg). The found values can thus substantially

deviate from mobilities measured by other techniques such as time-of-flight or Hall effect.

Moreover, it can depend on the bias conditions and the temperature. It is not uncommon

to find non-linear transfer curves. Experimentally it has been found[12] that deviations

from standard theory can be expressed in the form

Ids =
W

L
µCoxVds(Vg − Vt)

α. (3)

Here W and L are the source and drain electrode length and distance respectively, Cox

is the oxide capacitance density, Vds and Vg the drain-source and gate-source bias re-

spectively, and α an empirical factor which is equal to 1 for standard theory. Vt is the

bias needed to open the channel. The above equation makes the as-measured mobility

depending on the gate-bias, µ ∝ (Vg − Vt)
α−1. Qualitatively it is not difficult to see how

the mobility can be gate-dependent and the currents supra-linear. We have to bear in

mind that the mobility is a weighed average over all the states. Whereas the band states

have high mobility, carriers trapped on deep states do not contribute to the current and

have therefore mobility equal to zero. Because the gate bias can change the ratio of

trapped-to-free carriers, the mobility becomes gate-bias dependent. Specific models take

this a step further and quantitatively predict the value of α. These models such as Poole-

Frenkel[16, 17] and the similar multi-trap-and-release[18] or variable-range-hopping[19]

all include trap states. In a recent publication we have shown that the Poole-Frenkel

model of conduction is very adequate for describing the T6-FETs, thus showing the im-

portance of trap states in these materials. For amorphous-silicon thin-film transistors,

Shur and Hack[14] developed a theory incorporating an exponential distribution of trap



states, NT (E) ∝ exp(−E/kT2), with T2 a parameter describing the distribution. Their

model dictates that the drain-source current is of the form (Equation 53 of Ref.[14])

Ids =
qµ0W

L
f (T, T2) [Cox (|Vg − Vt|)](

2T2
T
−1) Vds, (4)

with

f(T, T2) = NV exp
(−EF0

kT

)
kTε

q

(
sin(πT/T2)

2πεT2kTgF0

)T2/T

. (5)

Here NV is the effective density of band states which is considered independent of tem-

perature (assuming a more accurate slowly-varying function, such as NV ∝ T 3/2 [16],

does not change the analysis). gF0 is the density of deep localized states at the Fermi

level EF0, which can be as large as NV . µ0 is the band mobility, ε the semiconductor

permittivity, q the elementary charge and k the Boltzmann constant. Note that a factor

q has been removed from the last term of the original form of Eq. 5 in order to make the

units correct. The dependence of the mobility on the gate-bias is immediately evident

because for a general temperature α = 2T2/T − 1 6= 1. Equation 4 also directly predicts

the second part of the Meyer-Neldel observation, namely there exists a temperature where

the current doesn’t depend on the gate voltage, TMN = 2T2. In other words, the Meyer-

Neldel temperature is a direct measure of the distribution of deep trap states and this

temperature can rapidly be determined by taking temperature-scanned-current curves at

different biases and thus becomes a figure-of-merit for the quality of the material used in

the FET.

The above equations also predict the first part of the Meyer-Neldel rule: For temper-

atures well below T2, the approximation sin(πT/T2) ≈ πT/T2 can be made and, together

with the relation ax = exp(x ln(a)), it is easily shown that the Arrhenius plots of current

are linear and the effective activation energy depends on the gate bias:

EA = EF0 − kT2

[
ln

(
1

2ε(kT2)2gF0

)
− 2 ln (Cox (|Vg − Vt|))

]
. (6)

Note that this activation energy can thus substantially deviate from the depth of the traps

at the Fermi level, EF0. In view of this and the linearity of the Arrhenius plots, one can

easily make the mistake of assuming a single discrete trap level to be responsible for the

activation of the current.



Figure 1 shows a simulation of a temperature-dependent-current of a system with

deep traps with the parameters as of Table 1. Note that the as-measured mobility is

much smaller than the band conduction mobility µ0. As an example, for the parameters

of Table 1 and |Vg − Vt| = 6 V and T = 300 K, the measured mobility is 8.0 x 10−3

cm2/Vs - 3 orders of magnitude below the band mobility µ0.
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Figure 1: Simulation of temperature-
dependent currents (I-T) based on
parameters of Table 1, with gate biases
from 0.1 V to 20 V as indicated. The
solid dot (•) represents the Meyer-Neldel
point (TMN,IMN). The inset shows the
effective activation energy as a function
of bias.

Table I: Simulation parameters used to
generate Figure 1.

Parameter value unit
NV 1019 cm−3

Cox 1.92 10−4 F/m2

EF0 484 meV
Vds -0.1 V
gF0 1016 cm−3eV−1

T2 450 K
W 1 cm
L 30 µm
µ0 3 cm2V−1s−1

ε 5ε0

For a specific α-sexithiophene p-channel FET, with geometric parameters W , L and

Cox as given in Table 1, I-T scans were made for various bias conditions[12]. An example

of an I-T curve for Vg = -10.5 V and Vds = -0.5 V, together with a simulation on basis of

Equation 4 is shown in Figure 2. A summary of the measured activation energies of current

as a function of gate bias is given in Figure 3. In these experiments, the scanning had to

be limited to below 210 K to avoid the phenomenon known as stress[20, 21], substantial

shifts of the threshold voltage Vt upon application of gate bias. This is especially pertinent

because the effect of bias on the measured activation energy is expected to be largest for

Vg close to Vt, as predicted by Equation 6. Thus, small changes of Vt influence the results

dramatically.

One final thing to note is that for temperature approaching T2 Equations 4 and 5

don’t yield a real value for the current. Interesting in this respect is the lack of presented

results in literature for measurements at the iso-kinetic temperature. In all cases the

Meyer-Neldel point is found by extrapolation of the curves.
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Figure 2: Arrhenius plot of the current
of an FET based on T6 with bias Vds =
-0.5 V and Vg = -10.5 V. The dashed line
shows a simulation with EF0 = 535 meV,
NV = 1.7 x 1019/cm3, Vg−Vt = -2 V and
other parameters as of Table 1. The slope
of the curve yields an effective activation
energy of 296 meV.
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Figure 3: Measured activation energy as
a function of bias of an FET based on sex-
ithiophene. The solid line is a fit to the
data yielding T2 = 250 ± 200 K and Vt =
-8.5 ± 1.4 V. To avoid systematic error,
the measurements were carried out in ran-
dom order. Each point represents a curve
such as shown in Figure 2.
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