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a b s t r a c t

The thin-film field-effect-transistor model recently developed is applied to devices based on materials
that already show current even without a bias present at the gate resulting in so-called normally-on
transistors. These fall in three categories: (i) narrow-band-gap semiconductors, where the thermal energy
is sufficient to excite carriers across the band-gap, here analyzed for unipolar and ambipolar materials,
(ii) doped semiconductors, and (iii) metals. It is shown what the impact is on the IV and transfer curves.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The thin-film transistor (TFT) structure is ever gaining in popu-
larity because of its ease of production and its flexibility in design.
In principle, any semiconducting material can be used as the active
layer and it does not even have to have a perfect lattice match with
the underlying substrate material. Moreover, because the film is
thin and deposited by a variety of techniques, they can be made
in all technological sectors, from high performance to very cheap.
In contrast, a metal-oxide-semiconductor field-effect transistor is
normally made from same material and the choice of devices is
therefore limited with the main innovation lying in the device
geometry design. TFTs thus find especially many applications in
organic devices where flexibility is a must, although amorphous
silicon TFTs still outnumber the organic counterparts.

In a recent publication, we successfully modeled the electri-
cal characteristics of thin-film transistors (TFTs) based on organic
and inorganic semiconductors [1], thus substituting the MOS-FET
model conventionally used also for TFTs for lack of alternatives.
The main difference between the MOS-FET model and the TFT
model is that the latter treats the active layer more adequately as
two-dimensional whereas in the MOS-FET model it is considered
three-dimensional. The TFT model was developed with intrinsic,
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wide-band-gap materials in mind, where the room-temperature,
zero-bias carrier density was negligible. The model covered both
unipolar and ambipolar materials, the difference being high mobil-
ity for one type or for both types of carrier, holes and electrons.
However, the range of materials is far bigger than these wide-band-
gap pure materials. Especially in organics, with their sheer infinite
number of possible configurations, the materials can behave from
metallic up to insulating with band gaps ranging from very small
to zero to very large and can be ranging from crystalline to amor-
phous and from ultra-pure to highly contaminated. It is interesting
to determine what happens if the limitation of zero charge at zero-
bias is removed. In a second work, we modeled the effects of traps
(localized electronic states that can capture the free charge carrier)
[2], which explains the temperature and bias-dependent mobility
(including the Meyer–Neldel rule) often observed in low-mobility
materials. However, we still considered the carrier density to be
zero in the absence of bias. In the current work we model TFTs
based on materials with substantial amounts of free charge at zero-
bias, which can be divided into three classes: narrow-band-gap
semiconductors, doped semiconductors, and metals.

2. Background

Before continuing, it is useful to do a small revision of the basic
ingredients of the thin-film transistor model. Fig. 1 shows a cross-
section of a TFT and the names for the variables used in this work.
The device consists essentially of three layers: a gate, an insulator
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Fig. 1. Cross-section of a thin-film FET showing the nomenclature used in the cur-
rent work.

and an active layer. The gate layer should be made of a conductive
material (metal or semiconductor) that is used to induce charge in
the active layer. The insulator separates the gate from the active
layer and has only the function of preventing charge flowing from
the active layer to the gate. The active layer, as demonstrated in
the previous work can be as thin as one mono-layer without loss
of functionality. In fact, for accumulation-channel devices only the
first mono-layer is of importance with any additional material on
top only working as a mechanical buffer. The pivotal ingredient
for a thin-film transistor model is to treat the active layer as two-
dimensional. In this case, the charge density induced in the active
layer by the gate is a linear function of the local potential drop across
the insulator (also called “oxide” here for historical reasons, as an
inheritance from silicon technology) [1]:

�(x) = [V(x) − Vg]Cox (1)

with �(x) and V(x) the local charge density and potential, respec-
tively at position x, Vg the uniform potential at the gate layer,
independent of x, and Cox the insulator capacitance density result-
ing from the separation of gate layer and active layer by the insulator
with thickness dox and permittivity εox, namely Cox = εox/dox.

In the case of pure, wide-band-gap semiconductors (wide-band-
gap is defined here as a band-gap for which there is a negligible
thermal excitation of carriers from valence band to conduction
band at room temperature; silicon is for instance in this respect
a wide-band-gap material), the charge is either free holes (p) or
free electrons (n), depending on the sign of the gate bias, and the
zero-bias density of them is 0. For example, for a hole-channel (neg-
ative gate bias) in an intrinsic wide-band-gap semiconductor, the
substitution �(x) = qp(x) can be made. Furthermore, the current Ix
at any place in space is equal to the local charge density multiplied
by the local field dV(x)/dx and the hole mobility �p (i.e., the cur-
rent is only comprised of drift current and diffusion currents are
negligible), and scaled by the device width W (see Fig. 1). In other
words,

Ix(x) = −qWp(x)�p
dV(x)

dx
(2)

and

p(x) = Cox[V(x) − Vg]
q

The solution of this differential equation (for Vg and Vds both nega-
tive) when using the correct boundary conditions (V(L) = Vds, with
L the distance between source and drain electrodes, V(0) = 0 and
Ix(x)= Ids for all x) is

Ids = −W

L
Cox�p

(
VgVds − 1

2
V2

ds

)
(3)

which is similar to the MOS-FET equations, but has the advantage
that the starting point is more adequate for TFTs.

In the current work we will discuss what will happen when
the condition that the zero-bias density of holes and electrons is
negligible is relaxed. For this we use the following ingredients:

1. The active layer is neutral at zero-bias. This implies that there is
no charge transfer between the active layer and the gate or insu-
lator layer. In other words, they all have the same electrochemical
potential.

2. All charge is free charge, free holes p and free electrons n, imply-
ing that the material is intrinsic without traps or other ways of
storing immobile charge; all induced charge contributes to cur-
rent. For doped semiconductors this limitation will be relaxed
and charge can also be stored on the dopants by ionizing them.

3. The total charge, the sum of negative charge and positive charge
follows Eq. (1), namely

p(x) − n(x) = [V(x) − Vg]Cox

q
(4)

For doped semiconductors an extra term is added to the left side
of this equation to include ionized impurities, while for metals
a term is added to the right-hand side representing the electron
sea, as will be discussed later.

4. The relative densities of electrons and holes follow a Fermi–Dirac
distribution defining a Fermi level. For all normal currents
(small drain-source biases), this Fermi level is equal for elec-
trons and holes (there is thermal equilibrium at all places and
no electron–hole recombination currents exist). The product of
electron density and hole density thus depends on the temper-
ature and the band-gap of the material [3]:

pn = n2
i = NVNC exp

(−Eg

kT

)
(5)

with ni is the intrinsic electron density, NV the effective density of
states of the valence band and NC is the conduction band states.
Eg is the electronic band-gap. Note that all units of density are
“per area”.

5. The current can have contributions from both electrons and
holes, the first part of Eq. (2) is replaced by

Ix(x) = −qW[p(x)�p + n(x)�n]
dV(x)

dx
(6)

The difference between these narrow gap materials and the
wide band gap devices described earlier by us [1] is that in these
materials electrons and holes can be present in substantial amounts
at the same place and time, because Eq. (5) allows for that; ni is
large where for wide-band-gap materials it is negligible. Even if
the wide-band-gap materials are ambipolar (with both electron
and hole mobility large), they can only have electrons and holes
and their associated currents at separate regions of the device. In
narrow-gap materials, on the other hand, electrons and holes can
coexist at the same time and place in the channel.

In the next sections the different classes of normally-on devices
are described. For the transfer curves, the linear region is used. In
this mode of operation, it is assumed that the drain-source bias is
so small as to guarantee a homogeneous device (charge densities
and electric field constant over the entire channel, independent of
x). The conductance is then defined as

G ≡ ∂Ids

∂Vds

∣∣∣∣
Vds=0

= q�ppW/L (7)

For the figures, this conductance is multiplied by a small potential,
for example Vds = −0.1 V to result in transfer curves (Ids − Vg). For
the IV curves (Ids − Vds), the differential equation, defined by Eqs.
(4)–(6), is solved. This is done numerically using Matlab.
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Table 1
Simulation parameters used in this work (unless otherwise specified)

Parameter value unit

NC 2.8 × 1016 m−2

NV 1.04 × 1016 m−2

Cox 160 �F/m2

Vds −0.1 V
W 1 cm
L 10 �m
�p 3 cm2/Vs
�n 1 cm2/Vs
Eg (for narrow gap) 0.1 eV
EA 0.2 eV
T 300 K
ni 2.5 × 1015 m−2

3. Narrow-gap semiconductors

Narrow-gap materials, in the context of the current work, are
defined as materials in which both electrons and holes exist in
thermal equilibrium. Silicon, for instance, is here considered a
wide-band-gap material since the room-temperature density of
free charge in intrinsic silicon is much less than the charge induced
by typical operating voltages. Unipolar devices are made of semi-
conductors where the mobility of one type of carrier is much higher
than that of the other type. For most organic semiconductors, it is
normally found that the hole-mobility is much higher than the elec-
tron mobility. As we have shown, low mobility in organic materials
is due to a high density of traps; the intrinsic mobility of pure crys-
talline materials is expected to be as high as their technologically
more advanced inorganic counterparts [2]. In this section we will
give an example of a narrow-gap material with high hole mobility
(�p = 3 cm2/Vs) and zero electron mobility (�n = 0).

The first direct obvious result of the description in the previous
section is that there is free charge (both electrons and holes) and
thus non-zero conductivity of the channel even at zero-bias. As an
example, for a device with parameters as in Table 1, with a bad gap
of 0.1 eV, the room-temperature zero-bias density of electrons and
holes according to Eq. (5) is p = n = 2.5 × 1015 m−2 uniform over
the entire channel. The conductance in the linear region (tiny Vds),
defined in Eq. (7) is 120 �S, resulting in a current of approximately
−12 �A for a bias of Vds = −0.1 V. In other words, the device is of
the so-called “normally-on” type because a current can exist even
in the absence of a (gate) bias.

The holes can be driven out of the channel by a positive gate bias.
However, holes cannot be completely removed from the channel,
since this would need an infinite density of electrons (Eq. (5)) and
thus an infinite gate bias (Eq. (4)). For a normally-on intrinsic device,
the hole density along the channel can thus be calculated from Eqs.
(4) and (5):

p(x) = [V(x) − Vg]Cox

2q
+

√
n2

i +
(

[V(x) − Vg]Cox

2q

)2

(8)

For small n{ this returns to Eq. (2) b. In the linear regime (V(x) ≈ 0
and a distribution of p uniform in the channel), the bias interval
at which p and thus the current goes from two times to half the
zero-bias value is

Vg = ±3qni

Cox
= ± 3q

Cox

√
NCNV exp

(
− Eg

2kT

)
(9)

For the device given here, this is in the order of ±1.1 V. Fig. 2 a shows
a simulation of the transfer curves for such a unipolar normally-
on device. Interesting to observe is that, were the device analyzed
with a classical MOS-FET model in the bias range shown, a threshold
voltage of approximately 1.6 V would have been estimated at room-

Fig. 2. Simulation of a narrow-band-gap unipolar device with parameters as in
Table 1(�n = 0): (a) transfer curves (Ids − Vgs) for temperatures ranging from 150 K
(top) to 350 K (bottom) in steps of 50 K. The dashed line shows an attempt-to-fit a
classical MOS-FET model to the behavior at T = 300 K, resulting in �FET = 2.7 cm2/Vs
and VT = +1.64 V. (b) Output curves (Ids − Vds) at 300 K for gate biases from −1 V to
−5 V in steps of 1 V. The dashed lines show the behavior for a wide-band-gap mate-
rial (ni = 0). (c) Output curves (Ids − Vds) at Vg = −1 V as a function of temperature
(100–350 K in steps of 50 K). For the lowest temperatures, the device behaves like a
wide-band-gap device with a pinch-off voltage equal to Vg. For higher temperatures,
the device stops showing saturation.

temperature (see the dashed line in the figure). Yet, this estimation
depends on the selected bias range and tends to 0 for large gate
voltages, as Eq. (8) easily demonstrates (extrapolate to p = 0 with
ni small compared to the other terms). The threshold voltage is not
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a device parameter for pure materials and only makes sense when
traps are present [2].

The second part of Fig. 2 shows simulations of the output curves
at room-temperature. They are based on a substitution of Eq. (8)
into Eq. (2) and numerically solving this differential equation. Note
the absence of saturation in the current. For the same reason that
the channel is open at Vg = 0, it is not possible to completely close
the channel (“pinch off”); this would need an infinite density of
electrons (p = 0 implies n = ∞, according to Eq. (5)). For com-
parison, the dashed lines in the figure show the equivalent wide
band-gap device (ni = 0). Fig. 2 c shows the temperature depen-
dence of a typical output curve at various temperatures. For the
lowest temperatures, the device behaves like a standard TFT with
pinch-off at Vds = Vg, while for higher temperatures, no saturation
takes place.

In ambipolar materials, mobilities of electrons and holes are
comparable. Such materials were already described in the first part
of this series of works, but they were limited to wide-band-gap
materials. In this section we describe the narrow-gap ambipolar
materials. The solution can be found by combining Eqs. (4)–(6), now
with a non-zero mobility for both electrons and holes. The complex-
ity of the differential equation prohibits its analytical solution, but a
numerical solution is readily found (as all of the systems presented
here). Fig. 3 a shows transfer curves at various temperatures.

Fig. 3. Simulation of a narrow-band-gap ambipolar device with parameters as in
Table 1: (a) transfer curves (Ids − Vgs) for temperatures ranging from 100 K (top) to
350 K (bottom) in steps of 50 K. The full circles indicate the minimum conductance
according to Eq. (10). (b) Output curves (Ids − Vds) at 300 K for gate biases from −1 V
to −5 V in steps of 1 V. The dashed lines show the behavior for a wider band-gap
ambipolar material (ni 1000 times smaller) and the dotted lines represent output
curves for wide-band-gap unipolar devices.

The channel in narrow-band-gap ambipolar devices cannot be
completely closed, since driving out holes with the field means
accumulating electrons and increases the conduction. However, the
transfer curves have a minimum in the linear region. It can easily
be shown that the minimum in conductance (Eq. (7)) occurs for a
bias

Vg,min = qni(T)
Cox

(√
�p

�n
−

√
�n

�p

)
(10)

and thus depends on the relative mobilities and the temperature
(Eq. (5)). This point of minimum conductance is indicated in Fig. 3
a. As such, these minima can serve as rapid evaluation tools of the
relative mobilities.

Again, the lack of the possibility of closing the channel goes hand
in hand with the non-saturability of IV curves, as can be seen in
Fig. 3 b.

4. Thick thin-film transistors

As discussed before, a thin-film transistor only needs a sin-
gle mono-layer to function well [1]. A special case occurs when
the transistor works in the thin-film regime – when not work-
ing in inversion as in a MOS-FET, so either intrinsic material, as
discussed above, or working in accumulation in doped semicon-
ductors, to be discussed later – but the film itself is thicker than
one mono-layer. When the material is not conductive, nothing will
change and normal electronic TFT behavior will be observed, as
for wide-band-gap intrinsic materials. Conduction will always be
in the first mono-layer and the other layers are passive buffers.
However, when the material is conductive, either because of the
narrow band gap, or because of doping of the material, or the lay-
ers are metallic, things change. The field-effect still occurs in the
first mono-layer, but the adjacent mono-layers now form paral-
lel conduction paths, not influenced by any bias at the gate. The
field-effect is thus drowned in the parallel conductance. Once this
is realized, the simulation of the behavior is obvious, yet it is still
useful to illustrate this in a figure, for a quick overview. Fig. 4 shows
the output and transfer characteristics for a device as used in the
previous paragraph at 300 K with various numbers of mono-layers.
In this simulation, each mono-layer contributes a conductance of
120 �S (or a parallel resistance of 8.4 k�), unaffected by the gate.
As can be seen, multi-layer devices can easily be confused with
narrow-band-gap devices; both cause a non-completely closing of

Fig. 4. Simulation of a thick narrow-band-gap unipolar device with parameters as
in Table 1(�n = 0) for different thicknesses ranging from 1 mono-layer to 5 mono-
layers. The dashed line shows the behavior of similar devices made of wide-band-gap
materials, independent of film thickness.
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Fig. 5. Simulation of a doped wide-band-gap unipolar device with parameters as in
Table 1(�n = 0) for different acceptor concentrations ranging from 0 to 8 × 1015 m−2

in four equal steps with energy EA = EV + 0.2 eV. The current is found as the con-
ductance of Eq. (7) multiplied by Vds.

the device at reverse bias. For comparison, the dashed line in the
same figure shows the behavior of similar films made of wide-
band-gap materials, which is independent of film thickness since
additional layers carry no free charge and do not contribute to con-
ductance.

In the discussion above, it was assumed that the second layer
(and consecutive layers) cannot be affected by the gate. This is true
up to a certain extent. Once the first layer has been depleted, the
second layer starts being modified. The bias at which this starts
being important however is quite large, as can be seen by check-
ing when the induced charge becomes comparable to the density
of band states. For the above device this is expected to happen at
approximately Vg = −qNV/Cox = −10 V.

5. Doped semiconductors

Another class of conductive materials is doped semiconduc-
tors. For the same reasons as for the narrow-gap materials, devices
based on these semiconductors will show conductance, even in the
absence of a gate field and will thus result in a “normally-on” device.
In case of a material doped with donors with density NA at energetic
position EA this implies substituting Eq. (4) by

p(x) − N−
A (x) − n(x) = [V(x) − Vg]Cox

q
, (11)

The system is not analytically solvable, but it can easily be solved
numerically. For the linear region the approximation can be made
that the charge densities of Eq. (11) are constant in space (indepen-
dent of x). The solution for each bias is then found by applying a
zero-finding algorithm to the difference of the left side and the
right side of Eq. (11) as a function of the position of the Fermi
level, using Fermi–Dirac distributions for the occupancy of the lev-
els. The conductance is then found by Eq. (7)(assuming a unipolar
behavior, �n = 0). Fig. 5 a shows a simulation of transfer curves for
such a wide-band-gap doped semiconductor device. The effects are
similar to the effects of narrowing the band-gap (Fig. 2), namely a
normally-on behavior, but, as can be seen, for doped semiconduc-
tors the channel can be closed, namely for a threshold voltage equal
to VT = qNA/Cox.

Doped semiconductor TFTs, only work in accumulation, even
when the material is ambipolar. When the devices are driven in
inversion, the dopants are no longer compensated by free charges.
This causes band bending.

Fig. 6. Simulation of a gold–insulator–gold TFT transfer curve with parameters as
in Table 1(n0 = 1.2 × 1019 m−2 and � = 47.8 cm2/Vs).

6. Metal–insulator–metal TFT

One interesting aspect of the TFT model is that the materials are
not limited to semiconductors only, as already stated in the first part
[1]. As long as the active layer is thin, so that parallel conductance
(current that is unaffected by the gate bias) is minimal, a device
can be made with a metal for the active layer. As an example we
will describe here a metal–insulator–metal TFT with a mono-layer
of gold as the channel. In practice, such ideal devices are difficult
to make, because the gold deposited on top of the oxide tends to
form islands instead of a uniform coverage of the insulator. Yet, it
may serve as a prototype for the model.

Gold has a density of 19,300 kg/m3and an atomic mass of
197 g/mol (1 mol is 6.02214199 × 1023 particles). With one free
electron per atom, this gives a free-electron density of 5.9 ×
1028 m−3. The electrical resistivity of 22.14 n�m then translates
into an electron mobility of 47.8 cm2/Vs (values taken from Ref. [4]),
a value we will use for this exercise. A film with a thickness equal
to one unit cell of the gold FCC crystal, 2 Å, has a two-dimensional
electron density of n0 = 1.2 × 1019 m−2independent of tempera-
ture. (Neutrality is maintained by the positively charged matrix of
the metal.) The local electron density in the presence of a field is
then equal to

n(x) = n0 + Cox[Vg − V(x)]
q

(12)

Such a film, used in a device with parameters as in Table 1, will
have a zero-bias conductance (Eq. (7)) of 9.2 S. Fig. 6 shows a sim-

Fig. 7. Simulation of a metal–insulator–metal (“metalloid”) TFT transfer curve with
parameters as in Table 1(n0 = 6 × 1015 m−2 and � = 47.8 cm2/Vs).
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Fig. 8. Simulation of metal–insulator–metal (“metalloid”) TFT output curves with
parameters as in Table 1(� = 47.8 cm2/Vs), for (a) n0 = 6 × 1016 m−2 and (b) n0 =
6 × 1015 m−2. The full circles indicate pinch-off at Vds = Vg − VT.

ulation of a transfer curve. Because of the high zero-bias density
of electrons, the relative effect of the gate field is small. However,
the absolute effect, the slope of the transfer curve, yields the same
mobility given above. For the same reason, the bias needed to close
the channel is large, VT = −qn0/Cox, and is of the order of 12 kV;
impossible to attain in practice. The same voltage is needed at the

drain to pinch-off the channel there. In other words, output (IV)
curves do not saturate and remain linear for a very large range of
voltages, with relative tiny field effect.

Organic devices may have density-of-states that are much lower
than pure gold devices, even when the materials are metallic. Next
we make a simulation of metallic behavior (half-filled band), but
with much smaller electronic state density, though with the same
charge carrier mobility of 47.8 cm2/Vs. We call this a metalloid
behavior to distinguish it from pure metallic behavior. As can be
seen in Figs. 7 and 8, when the density of states diminishes, the
device behaves more and more like typical semiconductor thin-
film transistors. For a zero-bias electron density of n0 = 6 × 1015

m−2, the bias to close the channel is VT = −qn0/Cox = −6 V (Fig. 7).
The output curve (Fig. 8b) thus saturates at a pinch-off voltage of
VP = Vg − VT.

7. Summary and conclusions

In this work, thin-film field-effect transistors were described
that are based on materials that have non-zero room-temperature
conductivity. When such materials are used in TFTs, they result
in so-called normally-on devices. They can be divided into three
groups: (i) narrow-gap semiconductors (unipolar and ambipolar),
(ii) doped semiconductors and (iii) metals. Each has its own charac-
teristic behavior. Moreover, when the film is thick (more than one
mono-layer), such normally-on devices show reduced relative field
effect.
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