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Abstract

Based on a new model for thin-film field-effect transistors, in which the active layer is treated as purely two-dimensional, the effects of impurities
on the electrical characteristics are discussed. Localized electronic levels are introduced into the model. It is shown that the presence of traps readily
accounts for the non-linearities in the current-voltage curves. Trap states can also explain the temperature dependence of the current and mobility,
including the so-called Meyer-Neldel Rule. Finally, transients are qualitatively discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the first part of this contribution, a two-dimensional model
for trap-free thin-film field-effect transistors based on intrinsic
materials was derived [1]. Differential equations were found
where the current at each point in space is proportional to the
induced charge density, the local field and the mobility, which
was considered constant. The solution of this set of differential
equations was I–V curves and transfer curves very similar to
those of MOS-FETs.

The technological knowledge of inorganic materials has
reached a level in which crystals can be made of them with
near absolute purity and crystallinity. Modern materials, such as
most organics, do not reach that level, yet, and a high density
of deep levels is to be expected. Another possible source for
traps is that thin-film layers in TFTs are nearly always grown
on top of non-lattice-matching other materials. The lattice mis-
match causes the layer to be amorphous with an unavoidable
high density of defects. Especially at the interface – the most
critical part of the device – deep levels from dangling bonds
can be present, either in the insulator or in the active material.
In silicon based devices, many years of efforts devised ways to
reduce the density of these “surface states” to negligible values.

∗ Corresponding author. Tel.: +351 969541198; fax: +351 289800030.
E-mail address: pjotr@ualg.pt (P. Stallinga).

For organic based devices such “cleaning up” processes are still
in their infancy. For instance, recently, Chua et al. have made
the observation that n-type behavior in organic-based transistors
has been hampered by a high density of electron traps caused
by unpassivated defects in the surface of the silicon oxide layer
[2]. In this part we will discuss the effects on the I–V and trans-
fer curves of intentional (doping) and unintentional introduction
of electronic levels. First, the general effects of trapping on the
threshold voltage are presented. Then the effects of doping and
traps on I–V curves and transfer curves are discussed. The new
deep levels also change the dependence of the current on temper-
ature as is discussed next, including the so-called Meyer-Neldel
Rule, where the activation energy of current depends on the bias
conditions. Finally, transients are briefly discussed.

Unless specified otherwise, the linear mode of operation is
assumed, with a drain-source bias so small that the density of
charge is constant along the entire channel and the approxima-
tion

Ids = qW
Vds

L
μp(Vg) (1)

can be made. The bias dependence of the current then becomes

∂Ids

∂Vg
= ∂Ids

∂p

∂p

∂Vg
= W

L
μVdsq

∂p(Vg)

∂Vg
(2)
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and the as-measured mobility of Eq. (4) of Ref. [1] is

μFET = − qμ

Cox

∂p(Vg)

∂Vg
(3)

or, in other words, the as-measured mobility is proportional to
the intrinsic mobility μ and the dependence of the free carrier
density on the gate bias. This dependence is not necessarily lin-
ear, as we will show, and a bias-dependent as-measured mobility
μFET can result.

2. Threshold voltage

For an MOS-FET, it can be demonstrated that the thresh-
old voltage in an inversion p-channel FET is Vt = 2ψB +√

2εqND2ψB/Cox, with ND the donor concentration, and ψB
the distance from mid-gap to the bulk Fermi level (2ψB is the
distance the Fermi level should be shifted to create an equal
density of charges of opposing sign as compared to the bulk)
[3]. The same model predicts a sub-threshold current exponen-
tially depending on the gate bias, defining a sub-threshold swing
S ≡ dVg/d(log Ids) [3]. Using the same reasoning, the threshold
voltage in an accumulation type FET is zero (Vt is the voltage
needed to create a charge density equal to the one in the bulk,
this time not of opposite sign; by definition zero). Sometimes,
in literature, the somewhat arbitrary definition is used that the
charge should have doubled at threshold [4]. Before continuing
the discussion of the threshold voltage, it is important to present
the correct procedure for extracting the threshold voltage from
experimental data.

The threshold voltage can be found by fitting a straight line
in a transfer curve in the linear region and extrapolating to zero
current. However, extracting the threshold voltage in this way
is not always easy. Fig. 1 shows an experimentally obtained
transfer curve in the linear region for an FET based on T6. From
this curve it is clear that the slope (and thus the mobility via Eq.
(3)) and the threshold voltage found by extrapolation to Ids = 0
depend on the point of the curve used; both μ and Vt depend
on Vg. The awkward situation arises in which both mobility
and threshold voltage can depend on the bias point considered.
Further on, in the section on the transfer curves we will show
how the mobility can depend strongly on the gate bias, resulting
in non-linear, power-law curves. For now, it suffices to say that
the correct procedure for extracting the threshold voltage is first
linearizing the curves by taking the nth root of the current. The
threshold voltage can then be found by extrapolation as before.
Fig. 1 b shows such a linearized curve and the threshold voltage
in this case is zero.

The observed threshold voltage can deviate from zero in cases
when the gate-induced charge is not mobile. In that case, at zero
bias there is charge (ρ), but no current. The total charge is trapped
charge (pt) plus free charge (p), thus q(p+ pt) = CoxVg and this
defines the threshold voltage as

Vt = −qpt

Cox
(4)

It is important to note that in an accumulation type FET there
is no direct link between the threshold voltage and acceptor or

Fig. 1. (a) Experimental transfer curve for an FET based on T6 showing
power-law dependence in the linear region. The as-measured mobility (Eq.
(3)) and threshold voltage depend on the bias point of the curve considered.
The dashed line shows an example at Vg = 12 V yielding Vt = 9.5 V and
μ = 2 × 10−5 cm2/Vs (b) The same transfer curve but linearized by taking the
fifth root of the current. The threshold voltage Vt found by extrapolation is zero.

donor concentrations, though Vt might be limited by the avail-
ability of traps.

An effect known as “stressing” is a phenomenon that the
threshold voltage is slowly and continuously shifting upon ap-
plication of the gate bias. In view of the model described here,
this can be attributed to trapping of free charge on deep lo-
calized states. A positive threshold voltage can equally easily
be achieved by trapping electrons. The trapped electrons [2]
are then compensated by free holes and a channel exists even
without bias, p− nt = 0, and Vt = qnt/Cox. This results in a
“normally-on” FET. Fig. 2 shows an experimental example of
how the gate bias can cause positive as well as negative thresh-
old voltages, depending on the sign of the bias. Thus confirming
that both holes and electrons can be trapped.

Fig. 3 demonstrates the amphoteric nature of trapping in
a typical organic semiconductor, sexithiophene (T6). In this
thermally stimulated current (TSC) experiment, the device is
cooled down with a gate bias switched on (with drain and
source interconnected and grounded). Depending on the sign
of the bias, electrons (Vg > 0) or holes (Vg < 0) are induced
in the channel and are available for trapping. At low temper-
atures the gate bias is removed and the current coming out of
the source and drain monitored with the current meter while
the temperature is ramped up. When charges are released from
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Fig. 2. Experimental transfer curves for a T6 TFT. Upon prolonged application
of a gate bias, the same device can be programmed to have large negative (a)
or positive (b) threshold voltage Vt. The former is achieved by trapping the free
holes induced by a negative gate bias, whereas the latter is achieved by trapping
the free electrons induced by a positive gate bias. Curves are linearized by the
procedure described in the text.

Fig. 3. Experimental thermally-stimulated currents (TSC) at zero bias in a device
of sexithiophene (T6), cooled down at two different biases (Vg = −10 V, top and
+10 V, bottom). This shows the amphoteric trapping character of the material,
being able to trap both holes and electrons. Scanning speeds 44 and 41 mK/s,
respectively.

the traps, they contribute to an external current that disappears
again once the traps are empty. The figure shows both signs of
currents indicating that both types of carriers can be trapped.
For the set-up used for this particular measurement, a positive
peak indicates positive charge emitted from traps and negative
peak negative charge. The same conclusion as for the thresh-
old voltage of Fig. 2, can be drawn for the TSC measurements,
namely a more efficient hole trapping compared to electron
trapping.

3. Effect of traps on the I–V curves

Non-linearities are often observed in I–V curves. They can
be described as supra-linear close to the origin, and are often
attributed to the effects of the contacts. As we have shown in
earlier sections of this work, this in not an adequate physical
picture. We will now discuss how an abundant trap can readily
explain these anomalous I–V curves.

A Poole and Frenkel approach shows how the current, and
thus the effective mobility (μ ∝ Ids/Vds), of a trap-ridden ma-
terial can depend on the temperature and electrical field [3,5]:

μPF = μ0 exp

[
− (ET − EV) − q

√
q|Ex|/πε

kT

]
, (5)

with μ0 the free carrier mobility, ET − EV the discrete trap
depth, Ex = dV (x)/dx the in-plane electric field, ε the permit-
tivity of the material and q the elementary charge. The effect
on the temperature dependence of the current will be described
further on. Here we discuss the field effect. Including a field de-
pendent mobility into the model, the differential equations for
TFTs now become

Ix(x) = Wqp(x)μ(x)
dV (x)

dx

p(x) = Cox[Vg − Vt − V (x)]

q

μ(x) = μ00 exp
( a

kT

√
|dV (x)/dx|

)
,

(6)

where the same boundary conditions apply as before (V (0) =
0, V (L) = Vds and Ix(x) = Ids) and μ00 = μ0 exp[−(ET −
EV)/kT ] depends on the temperature and the trap depth and
a =

√
q3/πε is a constant that depends only on the permittivity

of the material (ε). The above equations do not have a simple an-
alytical solution, however, they are not difficult to solve numer-
ically. Fig. 4 shows simulations of the I–V curves for different
temperatures (see Table 1).

The curves are clearly supra-linear for small Vds, especially
for lower temperatures, because a larger portion of the charges is
trapped, whereas for higher temperatures the charges are excited
to the mobile band and the mobility approachesμ0, independent
of field. It is also predicted that the non-linearities become more
pronounced when the channel length is reduced. This, because
the factor in the exponent of Eq. (6) scales with the inverse of
the channel length and takes an increasingly important role. As
to the effect on the shapes of the curves, it can be said that
the effect of reducing the channel length is equal to lowering
the temperature. This will be technologically important when
the devices are reduced to nano-scale dimensions. Severe non
linearities can be expected when abundant traps are present.

In conclusion, non-linearities are readily explained in the
framework of traps by assuming a field-assisted thermal excita-
tion from these deep levels, as proposed by Poole and Frenkel.

Table 1
Simulation parameters used in this work (unless otherwise specified)

Parameter Value Unit

NV 1.04 × 1016 m−2

Cox 160 μF/m2

Vds −0.1 V
gT0 1018 m−2 /eV
T2 800 K
W 1 cm
L 10 μm
μ0 3 cm2 /Vs
Eg 1.12 eV
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Fig. 4. Simulations of I–V curves for field-dependent mobility as described by
Poole and Frenkel for temperatures as indicated. Gate bias ranging from 1 to
10 V. Parameters as in Table 1 and ET = 100 meV and ε = 5ε0. For small field
dependence (infinite temperature), the familiar FET curves emerge. However,
for larger field dependence, the curves become pronouncedly concave (supra-
linear).

The model described above has, apart from the scaling param-
eter ET, only one adjustable parameter, namely the permittivity
of the material, ε. For the simulations in Fig. 4, an ε equal to 5ε0
was assumed; a reasonable value. For lower ε the effects are more
pronounced. As shown before, in standard theory the currents
are independent of the ratio W:L. When Poole-Frenkel conduc-
tion is important, this is no longer true, since the current depends
non-linearly on L. Severe short-channel effects thus result.

As a final remark, note that the field used in the calculation
is only the in-plane field Ex. This is because the perpendicular
field Ey is shielded by the build-up of charges. Since there is

no current in this direction, the total field is necessarily zero:
0 = Jy = qpμEy.

4. Doping, defects and impurities and their effect on the
transfer curves

For a TFT, without contact effects, in the linear region the
currents depend linearly on the gate-bias (and drain-bias).
The assumption was that the induced free charge in the
channel is linearly depending on the gate bias, because all
the charge induced by the gate is free charge. For traditional
materials, viz. Si or GaAs, this is a valid assumption because
the acceptors and donors introduce shallow levels, which
are consequently all ionized at all operational temperatures.
Any additional charge induced by the gate is necessarily
free charge. This then predicts currents rather independent
of temperature (since the dependence of the mobility on the
temperature is small) and linearly depending on bias. Yet, the
currents of organic TFTs are normally strongly temperature
dependent and often bias dependent [6–10]. In this section
we will discuss the various reasons that might cause such
observation, ranging from shallow and deep acceptors to
traps and show that only the latter can adequately explain the
observations.

As a first suspect for this behavior we try deep acceptors.
Acceptors are impurities in the material that can accept an elec-
tron from the valence band and can thus be either neutral or
negatively charged. In the materials used in modern TFTs, es-
pecially organic materials, the acceptor and donor states can be
very deep and abundant. Fig. 5 shows a graphical method of find-
ing the Fermi level and charge densities following the method
presented by Sze [3] of plotting all negative and all positive
charge in separate curves. The Fermi level is then found by the
crossing point of the curves, representing charge neutrality. As
demonstrated by Fig. 5, for deep abundant acceptors NX, while
resulting at room temperature in a free-hole density p equal to
the case of less-abundant shallow acceptorsNA, this free charge
density depends on the temperature. When the temperature is
raised, the slopes of all the slanted curves are reduced (propor-
tional to 1/kT ). This moves the charge-neutrality point (•) up,
indicating an increase of p and NX

− at a constant EF; electrons
are thermally excited from the valence band into the traps (or
holes from the traps into the valence band). On the contrary,
for shallow acceptors (solid curve) this point moves sideways,
indicating a change in Fermi level, but no change in p or NA

−.
The consequence of a huge density of such deep acceptors is

that the assumption that all induced charge is free charge is no
longer valid. Whereas the total induced charge ρ in the channel
is still equal to −CoxVg, this is divided over the free charge
p− n and immobile charge NX

− and each (can) depend on the
gate bias differently. Only the free charge contributes to current.
Imagine a situation with a deep acceptor density so high that at
room temperature they are not completely filled, as in Fig. 5.
When a negative gate bias is applied, the Fermi level EF will
shift down −δEF in such a way as to increase the total charge
density. For the Fermi level far away (� 3 kT) from the deep
level the distributions follow (using the Boltzmann distribution
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Fig. 5. Graphical method of finding the Fermi level. The hole density p, electron
density n and ionized acceptor densityNA

− depend on the position of the Fermi
level, EF. Demanding charge neutrality yields the value of EF and the zero-bias
free charge densityp0 as the crossing point of the curves for positive and negative
charge, as indicated by the full circle (•). The same Fermi level (and free hole
density) found for a fully ionized acceptor at EA with density NA can be found
for a partially ionized deep acceptor level atEX with abundanceNX. In the latter
case, the free hole density and ionized acceptor density (but not the Fermi level)
depend on the temperature. In the former case the Fermi level (but not the free
hole density or ionized acceptor density) depends on the temperature. Above the
figure, a schematic representation of the DOS is given. Units of densities are all
converted to 1/m2 via the channel thickness d (assumed to be 1 nm).

function)

p = NV exp

[
(EV − EF)

kT

]
(7)

NX
− = NX exp

[
(EF − EX)

kT

]
(8)

Considering that the total charge is

q(NX
− − p) = CoxVg (9)

the solution is that the as-measured mobility (Eq. (3)), that is
proportional to the derivative of free-carrier concentration, is

μFET ∝ − dp

dVg
= Cox

q

1

(p01/p)2 + 1
(10)

with p01 the zero-bias free-hole concentration,

p01 =
√
NVNX exp

[
(EV − EX)

2kT

]
(11)

When the channel is formed, p � p01 and the as-measured mo-
bility is independent of gate bias, even when an appreciable
amount of deep states NX is present; the transfer curves are
linear. Introducing a second deep level does not change this. As
long as the slope in the curves of both p and n+NX

− is ±1/kT ,
there will be no dependence of the mobility on Vg.

This might change when the Fermi level is at, or in the vicinity
of, the trap level and, locally, the slopes are different. This situ-
ation will now be investigated. When EF is close to EX Eq. (8)

Fig. 6. Graphical representation of the density of charge when the curves of
positive and negative charge have different slopes. As demonstrated in the text,
this still results in linear transfer curves.

is replaced by the full Fermi-Dirac distribution function instead
of the Boltzmann approximation used above:

NX
− = NX

1

1 + exp[(EX − EF)/kT ]
(8′)

which yields a complex solution when substituted into Eq. (9).
It is more interesting to analyze a general case when the slopes
of p and NX−, locally at the Fermi level, are different. Imagine
the slope of p to be −a, and the slope ofNX− to be b, with a and
b parameters that can still depend on temperature. Fig. 6 shows
this graphically. As long as the densities p and NX− are high,
(when the channel is open), the Fermi level does not move much
upon changes of bias and a and b can be considered constant
over a large voltage range. In this case, the above equations are
replaced by

p = NV exp[−a(EF − EV)] (7′′)

NX
− = NX exp[b(EF − EX)] (8′′)

The solution of the equations above is that (ignoring the tiny
contribution of n)

p02

(
p02

p

)b/a
− p = CoxVg

q
(12)

with the p02 the zero-bias hole concentration,

p02 = NX
a/(a+b)N

b/(a+b)
V exp

[
ab

a+ b
(EV − EX)

]
(13)

For equal slopes (for example a = b = 1/kT ) this reduces to
the earlier found mobility of Eqs. (10) and (11). In any case,
for p � p02 the first term of Eq. (12) is negligible and linear
transfer curves and bias-independent mobility result. Thus we
conclude that shallow or deep acceptors are not able to explain
a bias-dependent mobility, even when they are not discrete.

Instead of deep acceptors, the material might have abundant
traps NT. Traps differ from acceptors in that they can be neutral
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(N0
T) or positively charged (N+

T ) and can thus capture free holes.
We will now show that such traps can result in a bias-dependent
mobility.

First we will analyze a case of a discrete trap. In this case, the
density of free holes follows Eq. (7) and the density of charged
traps is

N+
T = NT exp

[
(ET − EF)

kT

]
(14)

Once more, the charge induced by the gate is the difference in
positive and negative charge, but the contribution of n is minute.
Thus the total induced charge becomes

p+N+
T = −CoxVg

q
(15)

or

p

(
1 + NT

NV
exp

[
(ET − EV)

kT

])
= −CoxVg

q
(16)

As can be seen, this results in a reduced as-measured mobility
(defined in Eq. (3)). Especially when the density of charged traps
is much higher than free holes, the as-measured mobility can be
much smaller than the intrinsic mobility. Moreover, the mobility
becomes temperature dependent, as will be discussed later. At
this stage, however, the conclusion is that a discrete trap results
in a gate-bias-independent mobility, since p depends linearly
on Vg. For less abundant traps, they can become exhausted for
increased biases. When the bias makes the Fermi level cross
the trap level, the approximation of Eq. (14) becomes invalid. In
this case, the contribution ofNT

+ in Eq. (15) becomes negligible
and the device returns to the trap-free situation, with a noticeable
increase in as-measured mobility.

We will now look at a more generalized situation. Imagine
a situation, with concentrations of free holes p, free electrons n
and trapped charge pt = NT

+ depending on the Fermi level in
a different way

p = NV exp[−a(EF − EV)] (17)

NT
+ = N0(T ) exp[−c(EF − EV)] (18)

as in Fig. 7. In this, N0 is a function of T but not of EF. Substi-
tuting this into the charge-bias relation of Eq. (15) results in

p+ p03

(
p

p03

)c/a
= −CoxVg

q
(19)

with p03 equal to

p03 = N
a/(a−c)
0 N

−c/(a−c)
V (20)

The interesting situation can exist when the trapped charge (sec-
ond term in Eq. (19)) is much larger than the free charge (see
Fig. 7). In that case, the as-measured mobility becomes strongly
bias dependent:

p =
(−CoxVg

q

)a/c
NVN

−a/c
0 (21)

The as-measured mobility of Eq. (3), being proportional to the
derivative of p(Vg), becomes

μFET = μ0
a

c

(−CoxVg

q

)a/c−1

NVN
−a/c
0 (22)

The interesting question now is: How can the slope of the
density of trapped charge NT

+ or free charge p in Fig. 7 be
different than 1/kT ? Inspired by the work of Shur and Hack
[11], we try a density of states (DOS) function exponentially
decaying in energy

NT(E) = gT0 exp

(
EV − E

kT2

)
(23)

with gT0 the density of states at E = EV and T2 the decay rate,
parameters that describe the distribution. The dependence of
NT

+ on the position of the Fermi level then becomes

NT
+(EF) =

∫ ∞

−∞
NT(E)[1 − f (E − EF)]dE (24)

with f the Fermi-Dirac distribution function,

f (E − EF) = 1

1 + exp[(E − EF)/kT ]
(25)

The integral of Eq. (24) converges when T < T2. To a good
approximation, the solution can be found by dividing the integral
into two parts, see Fig. 8. In the first part, below EF, the slope
is 1/kT − 1/kT2 as a result of the difference of slopes in NT
and the exponential approximation for 1 − f . Above EF, 1 − f

is considered unity and the resulting slope is 1/kT2. With this
help, it can easily be shown that the integral is equal to

NT
+(EF) = N0(T ) exp

(
EV − EF

kT2

)
(26)

where

N0(T ) = α(T )gT0
k2T 2

2

kT2 − kT
(27)

with α(T ) a slowly varying, dimensionless function depending
only on the temperature. α(T ) is an ad-hoc correction factor that
compensates for the error of integration; compare the rounded
distribution of NT

+ of Fig. 8 and the triangular integration de-
scribed above. Numerical simulations show that α(T ) oscillates
between 1 and 0.8 in the temperature range 0 - T2, see Fig. 9).
This makes N0 essentially temperature independent for T not
very close to T2. For T ≥ T2 the integral diverges.

Comparing Eq. (26) with Eq. (18) we see that

c = 1

kT2
(28)

Assuming a normal distribution of band states (implying a =
1/kT ), we find a bias and temperature dependent mobility of
Eq. (22)

μFET ∝ (−Vg)T2/T−1 (29)

which is similar, but not equal, to the result found by Shur and
Hack [11]. The differences will be discussed further on.
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Fig. 7. Graphical representation of the density of charge when there are two
types of states capable of storing positive charge, valence band statesNV storing
free holes p and trap states NT storing immobile charge pt . When they have a
different Fermi-level dependence, the result is a gate-bias dependent mobility,
as described in the text.

Finally, when also the conduction states of the valence band
are distributed in energy, in so-called band-tail states,

NV(E) = gV0 exp

(
EV − E

kT1

)
(30)

with gV0 the density-of-states at E = EV, similar argumenta-
tion will result in a bias dependent - but nearly temperature in-
dependent - mobility; a = 1/kT1 and the gate-bias dependence
becomes

μFET ∝ (−Vg)T2/T1−1 (31)

Interesting in view of this are the results of a particular T6 TFT
presented by us in an earlier work of a bias-dependent mobility,
μFET ∝ V 5

g for all temperatures measured [6].

Fig. 8. Graphical schematic of the distribution in energy of trap states NT(E)
(solid line) and charged trap states NT

+ (shaded area). The latter is a result of
a multiplication of the former by the Fermi-Dirac function 1 − f (E) (dashed
line). This shows that the total trapped chargeNT

+ as a function of Fermi level,
see the integral of Eq. (24), can easily be approximated by dividing the integral
into two parts.

Fig. 9. The ad-hoc correction factor α as a function of temperature, calculated
numerically. α is a slowly varying function of T and its contribution to the
calculation is minimal. For the coming calculations, α is approximated by a
third-order polynomial (solid line).

The relevant idea to retain is that the field-effect mobility
is gate-bias dependent when the ratio of trapped charge to free
charge density is relatively high.

5. Temperature dependence and the Meyer-Neldel Rule

In most materials, the mobility is only weakly temperature de-
pendent (μ ∝ Tα, with α depending on the limiting factor, rang-
ing from −3/2 for acoustic phonons, to 1/2 for optical-phonon
scattering) [3]. Moreover, since shallow donors or acceptors can
be considered fully ionized at all relevant temperatures, the cur-
rents, and hence the effective mobilities, according to Eq. (3)
are rather temperature independent. As discussed before, in the
case of deep acceptors, not all are ionized at room temperature.
The free-carrier density and bulk conductivity of the material
then depends exponentially on the temperature; Arrhenius plots
of the logarithm of conductivity or resistivity versus reciprocal
temperature are straight lines.

The effects on the FET currents are different. For discrete
deep acceptors, see Fig. 5, it was shown that, when the induced
charge is much larger than the zero-bias free hole concentration,
this induced charge is only free holes. Therefore, the transfer
curves are linear – the mobility is constant (Eq. (10)) – and the
currents are independent of temperature. The same reasoning
can be applied to an acceptor distributed in energy. In case of
acceptors, even when not completely ionized, the currents are
independent of temperature, because the induced charge is pre-
dominantly free charge.

The conclusion is that even in the presence of shallow or
deep acceptors, the transport mechanism is still dominated by
the free charge and the currents are independent of tempera-
ture. A temperature-dependent current and mobility can only be
explained in the framework of traps, as we will show now.

When the density of traps is high, Eq. (16) reduces to

p = CoxVg

q

NV

NT
exp

(
−ET − EV

kT

)
(32)
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Since the activation energy is defined as the slope of an Arrhe-
nius plot (ln(Ids) versus 1/kT ), and, using the linear relation
of Ids and p of Eq. (1), we get a bias-independent activation
energy of

Ea ≡ −d ln(Ids)

d(1/kT )
= ET − EV (33)

This is exactly the Poole-Frenkel activation energy if we remem-
ber that the effective trap depth can further be modulated by a
field.

More general distributions can result in a bias-dependent ac-
tivation energy. Using Eqs. (19) and (20), with the definition of
N0 as in Eq. (27) (c = 1/kT2) for trap states and conduction
states exponentially distributed in energy:

p =
(−CoxVg

q

)a/c
N

−a/c
0 NV (34)

For trap states exponentially distributed in energy, as de-
scribed before, c = 1/kT2, and normal band states, a = 1/kT ,
we find an activation energy for the current that depends on the
gate bias:

Ea = kT2 ln(N0) − kT2 ln

(−CoxVg

q

)
(35)

where N0 is only moderately dependent on T and can be con-
sidered constant when T not close to T2, resulting in linear Ar-
rhenius plots.

The Meyer-Neldel Rule [12] is an observation, originally
without an explanation, that the activation energy of a process –
for instance current or carrier mobility – depends on a parame-
ter and that there exists a temperature, known as the iso-kinetic
temperature TMN where the dependence disappears. Many ob-
servations of this are reported in literature [13–23]. Looking at
our results, we can see that the current and the mobility can
depend on the gate-bias when they are controlled by a huge
density of traps, distributed in energy. Eq. (34) shows the tem-
perature dependence of the free charge density (and the current
through the relation of Eq. (1)). Fig. 10 shows a simulation of
these currents for a = 1/kT and c = 1/kT2 with T2 = 800 K.
Eq. (34), remembering that a/c = T2/T , predicts an infinite iso-
kinetic temperature, TMN = ∞. Upon closer scrutiny, analyzing
the Fig. 10 reveals that the temperature dependent terms in N0
make the iso-kinetic temperature shift slightly. Note also a dra-
matic drop in current when the temperature approaches T2. The
slope in a plot of the as-measured activation energy versus bias
is kT2, see the inset of Fig. 10 and this is thus the most accurate
way of determining T2.

At the same time, because the mobility is proportional to the
derivative of the free-carrier concentration (Eq. (3)), the iso-
kinetic temperature for mobility is equal to TMN = T2. Analyz-
ing Eq. (22) it can be seen that the activation energy of mobility
is equal to the one found for current, see Eq. (35). Because of the
added factor a/c (= T2/T ), with respect to the Arrhenius plot
of currents, the non-linearities increase and the experimental
curves do not converge neatly to one point, see Fig. 11. Exper-
imentally, because of various sources of noise and instrumen-
tal distortions, it will be difficult to determine this non-perfect

Fig. 10. Arrhenius plots of current for various gate biases as indicated. The iso-
kinetic temperature, TMN, where the current is independent of bias, can be found
by extrapolation and is close to infinity (◦). The vertical dashed line indicates
T = T2. When approaching this temperature, the currents drop dramatically
because of the temperature dependence of N0. The Arrhenius plots are linear
over a wide range of temperatures, allowing for the determination of the as-
measured mobility via the slopes of the curves (dashed lines). The inset showsEa

as a function of bias, with the solid line a simulation of Eq. (35). The parameters
of the simulation are given in Table 1.

converging. In any case, a better procedure would be to plot
the logarithm of μT versus 1/T . This makes the curves more
linear.

Finally, when also the mobile states are distributed in energy,
in so-called band-tail states, then a = 1/kT1 and the current
and mobility become nearly temperature independent. In that
case, the mobility is proportional to Vγg with γ = T2/T1 − 1
independent of temperature. Fig. 12 shows a simulation of the
transfer curves for various temperatures in a logarithmic and
linear scale. The inset shows a possible DOS resulting in such
behavior. The transfer curves are indeed very similar to what we
observed in a TFT of sexithiophene [6].

Fig. 11. Arrhenius plots of mobility for various gate biases. The iso-kinetic
temperature, TMN, where the mobility is independent of bias, is close to T2 and
is indicated with ◦. The vertical dashed line indicates T = T2. The Arrhenius
plots are linear over a wide range of temperatures, allowing for the determination
of the as-measured mobility via the slopes of the curves (dashed lines). The inset
shows Ea as a function of bias, with the solid line a simulation of Eq. (35). The
parameters of the simulation are given in Table 1.
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Fig. 12. Transfer curves for various temperatures in Log–Log scale (main plot)
and linear scale (inset). For this simulation, T1 = 400 K, T2 = 3000 K and μ =
3 cm2/Vs (other parameters as in Table 1). A strongly bias-dependent mobility
μFET ∝ V

γ
g results, with γ = 5 independent of temperature. This is all the result

of a DOS as indicated in the top inset; both the trap states as well as the conduction
states exponetially distributed in energy with the Fermi level such thatNT

+ � p.

6. Transients

In the previous section, the bias dependence of the current and
mobility was analyzed by taking into account localized states.
It was there silently assumed that an equilibrium is achieved
instantaneously upon changes of bias; any change of bias im-
mediately causes a new distribution as calculated. This, how-
ever, is not an accurate picture. When the bias is changed, initial
changes in charge density has necessarily to be of the free carrier
kind, otherwise the charge would have no possibility to reach
any given point in space. Holes, once injected into the valence
band, become available for capture at the localized states. Under
normal circumstances, the capture of carriers onto deep levels is
fast and the emission thermally stimulated and slow [24]. When
configurational distortions occur upon capture and release of
charge, this picture can be modified. Both emission and capture
become thermally activated, though with different activation en-
ergies, see Fig. 13. The capture of carriers can thus be expressed
in the following equation

cp(T ) = cp0T
2 exp

(−Ec

kT

)
(36)

with cp0 the pre-factor and Ec the activation energy. For normal
temperature ranges, the term T 2 can be considered constant. As
demonstrated by Fig. 13, the activation energy is not necessarily
the level depth found in the temperature scanned currents,ET −
EV, see the Poole-Frenkel model of Eqs. (5) or (33).

Thus, a single, abundant deep level will cause a current expo-
nentially decaying in time, with a characteristic time τ = 1/cp.
When the levels receiving the charge are distributed in energy,
a complicated convolution of capture processes can exist. In-

Fig. 13. Configuration-Coordinate Diagram. Upon capture of a carrier, the lat-
tice can locally distort, represented by a generalized configuration coordinate Q,
for instance the “breathing mode” of surrounding atoms. The system relaxes to a
new local minimum. This demonstrates how the barriers for thermally activated
capture (Ec) and emission (Ee) of carriers can be different and deviating from
the trap depthEV − ET. The latter determines the final ratio of trapped and free
charge, while the former two determine the speed at which this equilibrium is
reached.

tegration has to be done over all the levels that are available
for receiving a free carrier. Each can have a different pre-factor.
Many people have treated this in literature. Two results need to
be highlighted. In the first model, originating from Kohlrausch
in the 19th century [25], in glassy relaxations [26], the transients
are of the stretched-exponential type

Ids = I0 exp

[
−

( t
τ

)β]
+ I∞ (37)

with I0 the starting current and I∞ the final current, with the
latter following the calculations given earlier. For very abundant
traps, this current can be (close to) zero, as shown before. In
another model, the currents follow a power-law [27]

Ids = I0

( t
τ

)−α
(38)

as a result of a multiple-trapping mechanism in an exponential
DOS. It is often difficult to decide between the models on basis
of experimental results.

7. Discussion and summary

In this second part of the modeling of TFTs, the effects of
impurities are studied. In the first section, the effect of a field-
dependent mobility is analyzed. In the Poole-Frenkel theory, the
mobility depends on the field because adding a slanted potential
offset lowers the barrier for escaping from a trap. As shown in the
current work, this causes non-linearities in the I–V curves. These
effects become more pronounced when the device dimensions
are reduced. In standard MOS-FETs, short channel-effects are
caused by overlapping depletion zones. In TFTs there are no
depletion zones and short channel effects are exclusively caused
by field dependence of the mobility.

The effects of doping of the semiconductor were considered
with a focus on wide band-gap materials, such as most organic
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semiconductors. The conclusions are that only traps cause a tem-
perature dependent current (and thus a temperature-dependent
mobility when defined via the derivative of the current as in Eq.
(4) of Ref. [1]). When the traps are distributed in energy, the
activation energy found in Arrhenius plots depend on the gate
bias. This is called the Meyer-Neldel Rule which thus finds it’s
origin in abundant deep localized states.

In a previous work [28] we have shown that, using the theory
of Shur and Hack [11], we were able to explain the Meyer-
Neldel Rule. In the current work we arrive at a seemingly similar
conclusion, but there is an important difference. Whereas Shur
and Hack demonstrate a current depending on the gate bias

Ids ∝ V 2T2/T−1
g (39)

when the traps as well as the conduction states are distributed
in space (parameters T2 and T1, respectively), we find a current
with a different gate-bias dependence:

Ids ∝ VT2/T
g (40)

Moreover, we find this only when exclusively the trap states
are distributed in energy, with a normal conduction band. When
both the trap states and the conduction states are distributed in
energy, we find a current strongly, non-linearly depending on
the bias dependent current, but the exponent in this power-law
independent of temperature

Ids ∝ VT2/T1
g (41)

Another important difference is that we foresee an infinite iso-
kinetic temperature for current, as shown in Fig. 10 , whereas
Shur and Hack calculate the current to be bias-independent at
a temperature T = 2T2 (compare Eq. (39) with Eq. (40)). Both
models predict a non-infinite iso-kinetic temperature for mobil-
ity equal to T2, but our model needs only non-discrete trap states,
while the Shur and Hack model needs distributed states for both
the traps as well as the valence band. Finally, our theory can
adequately describe situations in which the current is nearly in-
dependent on temperature, but strongly dependent on bias. This
occurs when both conduction and trap states are distributed in
energy. The experimental observation of such currents in earlier
work [6] strengthens our theory.

The basic idea we should remain with, is that the measured
mobility is an average over the trapped and delocalized states,
and can take any value from zero up to the free charge value.
Moreover, since the ratio of trapped-to-free charges depends
on temperature, and bias, so does the measured mobility. In a
recent work we have shown this model to be highly adequate for
describing the conduction in FETs of sexithiophene (T6) [6].

The model including the traps is restricted to temperatures be-
low T2. This is because the integral for calculating the charged
trap density (Eq. (24)) diverges when T ≥ T2. This, in turn, is
caused by the assumption that the density of traps to spread
over the entire energy range −∞ to ∞ (Eq. (23)). This, is of
course not a very realistic situation, but it simplifies the calcu-
lation, and since the contribution from states far away from the
Fermi level is negligible, it is allowed. The biggest contribution
to the integral comes from states in the vicinity of the Fermi
level, as demonstrated by Fig. 8. It can therefore be said that

the theory is qualitatively accurate for arbitrary distributions, as
long as locally, at the Fermi level, the distribution decays ex-
ponentially and continues to do so for all voltages considered.
Worth mentioning in this respect is the model of Fishchuk et al.
[29] and similar models with states with Gaussian distributions.
Such distributions are likely to also result in temperature and
bias-dependent mobilities. Moreover, the model described by us
will also do this for T beyond T2, but before endeavoring these
execute these calculations, more information about the DOS is
needed.

In the section on transients we argued that the high density of
traps can also causes transient effects. With a single trap level,
the transients are exponential, but for other distributions of traps,
the transients become non-exponential. This immediately es-
tablishes the link between non-exponential relaxations and the
Meyer-Neldel rule, as also pointed out by Chen and Huang [30].

It is interesting to compare this to the work of Powell [31].
He explains the transients by a slow redistribution of charge
in a direction (y) perpendicular to the direction (x) of current.
Because of this redistribution, a new band bending is established
and a different current results. In our model, no band bending
exists, and the charges are only redistributed in energy. Free
charge is trapped and becomes unavailable for external currents.
While still contributing to the charge density, this charge does
not contribute to current; a slowly decaying current is observed.

As to the location of the traps responsible for the described
effects, it has to be mentioned that they are not necessarily inside
the semiconductor material. It might be possible that the traps
reside in the insulator. Experimentally, it is difficult to determine
the exact location. Technologically, the issue might be addressed
by trying a multitude of insulators, surface treatments, and active
materials.

Finally, it has to be pointed out that in this work the density
of traps is considered constant, and does not vary with bias,
temperature, or time. It might be possible that this density is, for
instance, changing over temperature. In previous works we have
shown that at a temperature of 200 K the device shows abrupt
changes in the conduction parameters [6]. This hints at a phase
transition. Recently, we have shown that omnipresent water is
responsible for this phase transition [32].

8. Final conclusions

A simple model was developed which can adequately predict
the electrical characteristics of thin-film field-effect transistors,
including intrinsic ambipolar devices. Moreover, it is argued
that the model works equally well for accumulation FETs of any
thickness; in the absence of localized states (donors) to store im-
mobile positive charge, any induced charge is necessarily close
to the interface.

First, the model was developed for trap-free devices. The
model provides insight into the physical origin of the “contact
effects”, by showing clearly that the supra linear behavior of the
current voltage characteristics could only be explained by intro-
ducing charge-carrier trap-states into the model, as explained in
the second part. The filling of traps states also explains the ap-
pearance of a threshold voltage. The inclusion of a high density
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of traps causes bias and temperature dependent mobility, in-
cluding the Meyer-Neldel rule. We also show that if these states
are distributed in energy, it will lead to non-exponential current
transients, as normally observed.
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