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Abstract

A new analytical model is developed for thin-film field-effect transistors (TFTs). The active layer of the devices is considered purely two-
dimensional. In the first part, the basic model is developed for intrinsic materials. It is demonstrated that it accurately describes the electrical
characteristics and elucidates on the physical meaning of the device and material parameters, such as threshold voltage and sub-threshold current.
It also clarifies the nature of so-called contact effects, often used in literature to explain non-linear I–V curves. Furthermore, ambipolar devices are
treated.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In spite of the rapid growth of interest in organic elec-
tronic materials, the ever-increasing quality of the materials
and devices, and the resulting unique devices [1–3] – includ-
ing ambipolar devices needed for logic circuits [4] – the debate
as to the processes governing and limiting charge conduction
is not yet settled. Often, the carrier mobility is bias dependent
[5–9], which seems difficult to explain in conventional theo-
ries. Another example is the discussion between hopping and
band conduction. Apart from this, there is the question of the
workings of the device. It is common practice to fully apply
the conventional inversion-channel metal-oxide-semiconductor
field-effect transistors (MOS-FET) model [10] to the thin-film
field-effect transistors (TFT) [11]. This is surprising considering
that inversion has not been observed in organic transistors. The
majority of the models proposed in the literature are based on the
three-dimensional model developed for inorganic MOS-FETs.
The Thiais group has added a trap model, known as multi-trap-
and-release (MTR) model to simulate the experimental I–V and
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transfer curves [11], while the Bell-Labs group has proposed a
model in which a constant mobility is assumed in a trap-free
material, but with the concept of contact resistance [12]. In the
current work we first derive a simple model for TFTs that can
adequately explain the basic I–V and transfer curves. The model
is found by removing from existing theories everything that is
not needed to explain the TFT behavior. A remarkably simple
and yet fully functional theory emerges. Then we introduce per-
turbations to the model, such as the effects of the contacts and
ambipolar devices. In the second part traps are added to the sys-
tem and it is easily shown how they explain the temperature and
bias dependence of current and mobility and transient behavior.
The device described is a p-channel FET, with organic mate-
rials in mind, but the model is equally applicable to n-channel
FETs and other materials, such as (amorphous) silicon, with the
adequate changes of signs and symbols.

2. Background

Fig. 1 shows a cross-section of a thin-film FET with the
nomenclature used in the current work. The device consists of a
conductor called the gate (made of metal or a highly doped semi-
conductor) an insulating layer (which we will call the oxide layer

0379-6779/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.synthmet.2006.09.015
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Fig. 1. Cross-section of a thin-film FET showing the nomenclature used in the
current work.

throughout this work, as an inheritance from silicon technology)
of thickness dox (resulting in capacitance density Cox = εox/dox,
with εox the permittivity of the insulator material) and a semicon-
ducting layer that accommodates the channel of charged carriers
and can thus be called the active layer. The basic working of the
field effect transistor is that charge density in this layer and thus
its conductivity can be modulated by a tension at the gate relative
to the semiconductor. The charges are injected and collected by
the source and drain electrodes, respectively. Observable exter-
nal electrical quantities are: Ids the drain–source current, Vds the
drain–source voltage and Vg the gate–source voltage. The leak-
age currents, such as drain–gate or gate–source, are considered
zero.

It is standard practice in literature to use textbook
inversion-channel metal-oxide-semiconductor field-effect tran-
sistor (MOS-FET) theory to describe the behavior of organic
FETs [11]. There are two reasons why this might be inappropri-
ate. First, the real devices are, without fail, thin-film FETs (TFT)
and as such do not have a bulk region. Apart from reducing the
four-terminal MOS-FET devices to a three-terminal TFT from
an electronics point of view, the main concern is that a TFT, with-
out a bulk region, cannot accommodate a band bending. Second,
organic TFTs are all accumulation-channel FETs. In this situa-
tion, in the absence of localized states (donors) to store immobile
positive charge, no band-bending can be be maintained, even if
the active layer is thick. Summarizing, the thick semiconductor
in a standard MOS-FET can accommodate band bending and
will have band bending in inversion mode. Charges induced by
the gate are then not all located close to the interface and a
complicated charge-voltage and hence current-voltage relation
results. In a thin-film FET, or in general an accumulation-type
FET, all induced charge is necessarily close to the insulator and
the charge–voltage relation is always simply:

ρ(x) = [
V (x) − Vg

]
Cox (1)

with ρ and V the local charge per area and voltage in the channel,
respectively. This charge in a TFT might still be either mobile or
immobile, though. The consequences of immobile charge will
also be discussed in this contribution. To give an idea of how
thin the active layer in a TFT can be and still work properly:
for a silicon based device, with −1 V at the gate relative to
drain and source and an oxide thickness of dox = 200 nm, the
induced charge is 0.17 mC/m2. With a density of states of NV
of 1.04 × 1019 cm−3 and assuming continuity, this can fit into
1 Å; less than the height of a monolayer. The TFTs have thus
effectively two-dimensional charge distributions. This explains
why, as has been shown, for organic FETs only the (quality of

the) first monolayer matters. At best, the consecutive layers help
to stabilize the integrity of the first layer, in terms of diffusion
of impurities and crystallinity.

For a standard MOS-FET, the assumption is made that the
induced free charge in the channel is linearly depending on the
gate bias. This is because, once the channel has been formed,
all the charge induced by the gate is free charge. This in turn
is caused by the type of semiconductor used in FETs. For tra-
ditional materials, viz., Si or GaAs, the acceptors and donors
introduce shallow levels, which are consequently all ionized
at all operational temperatures. In organic semiconductors, the
acceptor and donor states are very deep and abundant. As a result,
even at room temperature, not all levels are ionized and temper-
ature and bias can change the degree of occupancy. As we will
show, the as-measured mobility does not change because of an
increased depth of the acceptor level. On the other hand, traps,
that differ from acceptors in that they can be neutral or positively
charged, have a severe effect on the electrical characteristics of
the device. This is demonstrated in the second part of the work.

This article is organized in the following way. First we will
derive equations for the basic operation of a TFT. Then we will
discuss the differences and perturbations to the model, includ-
ing contact effects and traps. As a starting remark, the units of
densities used are all “per area”. This includes the charge den-
sities, carrier densities and densities of states. This might cause
some confusion, especially when the same symbols are used as
for their three-dimensional counterparts, for instance, NV, the
density of valence band states. In those cases they are imagined
to be multiplied by the effective thickness of the active layer to
arrive at the two-dimensional values.

3. Basic model

It is easy to show that the equation for currents of a MOS-
FET is also applicable to thin-film FETs. In the case of a TFT the
thickness of the channel is constant, but the density of charges p
inside the channel varies from one electrode (“source”, x = 0) to
the other (“drain”, x = L). To calculate the currents through the
device, we have to understand that, locally, the current Ix(x) at a
certain point x in the channel is equal to the local induced charge,
Cox[(Vg − Vt) − V (x)], multiplied by the carrier mobility μ, the
field felt by the charges, dV (x)/dx (only drift current considered,
see comment later), and the channel width W. In other words,
we have the following differential equation:

Ix(x) = qWp(x)μ
dV (x)

dx
, p(x) = Cox[V (x) − (Vg − Vt)]

q

(2)

Vt is the threshold voltage, which will be discussed later in a sep-
arate section. However, an important difference with standard
FET models is that Vt is not related to donor or acceptor con-
centrations. The threshold voltage can only deviate from zero
in the presence of traps. With boundary conditions V (0) = 0,
V (L) = Vds, and Ix(x) = Ids for all x, the solution is

Ids = −W

L
Coxμ

[
(Vg − Vt)Vds − 1

2
V 2

ds

]
(3)
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Fig. 2. (a) I–V curves (Ids vs. Vds) of an ideal thin-film FET resulting from Eq.
(3) (thin lines). (b) Transfer curves for same device. The parameters are given
in Table 1 . Absolute values for current and voltage. Thick lines indicate the
saturation regime.

Vds and Vg both negative. This equation for TFTs is very sim-
ilar to the equation for MOS-FETs [10]. The only prerequi-
site is (low) ohmic contacts. The effects of the contacts will
be discussed later. The equation is valid up to Vds = Vg − Vt.
After that, saturation starts in: a region close to the drain is
below threshold voltage and is devoid of charges. When the
sub-threshold conductivity is (close to) zero this region can
be infinitely small and still absorb all of the above-saturation
voltage Vds − (Vg − Vt). In this way, the charge and voltage dis-
tribution across the device (except for an infinitely thin zone) is
independent of the drain–source voltage and hence the current
is constant at Ids = −(1/2)(W/L)μCox(Vt − Vg)2. Fig. 2 shows
the electrical characteristics of an ideal TFT.

When the sub-threshold conductivity is not zero, the above-
saturation voltage can only be supported over a finitely thick
zone (l) which depends on the voltage. The remaining volt-
age drop Vt − Vg then occurs in a region that is not of con-
stant width but shrinks to L − l for increased Vds. The result
is that the saturation current is not constant but continues to
increase for higher drain voltages. Ergo, there is a direct link
between the sub-threshold current and the saturation behav-
ior. Devices having a sub-threshold current will also exhibit
I–V curves that do not saturate. This reasoning is equal to

the one used to describe saturation behavior in the MOS-FET
model.

For low voltages, the quadratic term in Vds disappears from
Eq. (3) and this is called the linear region. Conventionally, the
mobility of an FET is defined via the derivative of a transfer
curve (Ids − Vg). Using Eq. (3) for small Vds:

μFET ≡ − L

WCoxVds

∂Ids

∂Vg
(4)

where the subscript FET is used to distinguish it from mobili-
ties measured by other techniques such as time-of-flight (ToF)
[13–17], Hall effect, or delay of luminescence [18]. For vari-
ous reasons, which will be described in the second part, for an
organic TFT, the as-measured mobility can depend on things
such as the temperature and the bias and can substantially devi-
ate from mobilities measured with other techniques.

4. Effects of the contacts

In organic TFTs, often non-linearities in I–V curves are
observed[19–24]. The argumentation is using the generic term
“contact effects” [19,25–28]. In an FET there might be two pos-
sible contact effects, namely contact resistance [26,29–35] and
contact Schottky barriers [36–45] (note that the references are
far from being exhaustive). The first might be caused by the
formation of a high resistive area in the vicinity of the drain
and source electrodes. This can then impede carrier injection. A
standard procedure for extracting this resistance is by measuring
the device resistance as a function of channel length and extrap-
olating to zero [30,26,29,34,35]. This method requires an easy
access to a large number of devices prepared under identical
conditions and is rather time consuming. Later we will present
a faster way of determining the contact resistance.

On the other hand, when a metal is brought into intimate
contact with a semiconductor, usually a depletion layer is formed
at the interface [10]. When their respective work functions are
different, a Schottky barrier results that limits charge carrier
injection. Note that the work function of the semiconductor is
here defined as the electron affinity plus the Fermi-level depth,
or, in other words, the distance between the vacuum level and
the Fermi-level. Now we will demonstrate the effects of both
type of contacts on the electrical characteristics.

Fig. 3 shows a circuit of an FET with contact resistances R

at the source and the drain. For simplicity sake, these are con-
sidered to be of equal magnitude, although the results are not
much different when this restriction is abandoned. Fig. 4 shows
the simulation of plots for different gate biases. For R equal to
zero, the ideal I–V curves emerge. When increasing the contact
resistances, two things occur. First, the curves pinch together,
and second, a tiny curvature becomes visible. This curvature is
convex (sub-linear); contrary to what normally observed exper-
imentally. This should not have come as a surprise. After all,
an FET is a trans-resistor. Once the resistance of the channel is
programmed by the gate, the I–V curves follow a simple elec-
tronics Ohms law. The small positive curvature is caused by
the “voltage stealing” effect; a small voltage is added to the
source (�Vs = IdsR), which diminishes the gate–source poten-
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Fig. 3. Model of an ideal FET with resistances R (left), Schottky barriers (mid-
dle), or anti-parallel Schottky barriers (right) at the drain and source contact.

tial drop and thus closes the channel slightly and increases the
FET resistance. The same effect causes a slight earlier onset
of saturation as careful analysis of the figures shows. For very
high contact resistances, the curves become independent of gate
bias, as shown in Fig. 4. This is easy to understand; the cur-
rents are now totally limited by the contact resistances and the
FET channel resistance is insignificant. The I–V curves for vari-
ous gate biases become superimposed. The important conclusion
that emerges is that contact resistances can explain curve crowd-
ing and sub-linear I–V curves. In contrast, it is often reported
that experimental transistor curves show supra-linear behavior.
It still be shown later that this supra-linear behavior can only be
explained by including traps in the model.

Fig. 5 shows transfer curves for different contact resistances.
It is clear that for higher resistances, the curves show a tendency
to saturate. This is because the total resistance for high bias
at the gate approaches the contact resistance and this limits the
current. The maximum current is Ids = Vds/2R for Vg = ∞ and
this provides a rapid and reliable way for determining R requiring
only a single device. Even for other models of the FET, with, for
instance, bias-dependent mobility, this picture will not change
substantially; in case of contact resistance, the transfer curves
saturate, in the linear region, as shown in Fig. 5, as well as in
the saturation region.

Alternatively, the charge injection might be limited by Schot-
tky barriers at the electrodes. This, at first sight might seem to
explain the supra-linear behavior seen in the I–V curves, since
currents of a junction grow exponentially with bias. Indeed,
many authors use such ideas to explain non-linear effects seen
in the I–V curves. However, one must not forget that when
one side (drain or source contact) is in forward bias (Ids =
I0[exp(qV/kT ) − 1]), the other side is in reverse bias (Ids =
I0[1 − exp(qV/kT )]), with V the voltage drop at a contact. See
Fig. 3b for the equivalent electrical circuit. The maximum cur-
rent is thus the reverse-bias saturation current I0. More precisely,
not ignoring either the forward or reverse biased barrier, the cur-
rents follow:

Ids = I0 tanh

(
qVds

kT

)
(5)

with k Boltzmann’s constant, T the absolute temperature and
q the elementary charge. For small voltages of the argument,
tanh is a linear function. For Vds � 3kT/q (80 mV at 300 K),
the dependence of the current on Vds disappears, indicating
that these barriers, although possibly limiting the current,
can never cause non-linearities in the Ids − Vds curves over
a large voltage range. Including an ideality factor n in the
equation can only stretch this by a factor n, with n normally
in the range 1–5. Moreover, the currents are independent off
the gate bias. See Fig. 6 for a visual comparison of the basic
FET model with a Schottky-barrier-limited model. Sometimes
in literature, especially authors describing electronic (SPICE)
models of the device use a model of an FET with double,
antiparallel diodes at the electrodes [34,46], see Fig. 3c.
This results in a good description of the devices, but lacks
physical basis. A combination of a Schottky barrier at the
forward-biased contact and a resistance at the counter-electrode
might do the trick, but also here the explanation becomes
awkward. Another effect at the contacts might be tunneling
diodes [47]. As shown before [10], the currents are of the form
I = It[exp(qV/kT ) − 1], with It exponentially depending on
the barrier height and tunneling distance D, It ∝ exp(αφBp/D).
The same reasoning for the Schottky barriers above can be
applied to tunnel barriers. We conclude that Schottky barriers
cannot explain non-linearities in the I–V curves experimentally
observed.

The above analysis is based on a two-terminal geometry, by
temporarily ignoring the presence of the gate and imagining
Schottky barriers as electronic components added at the contacts.
This picture is far from adequate. When the gate is included,
the designation “Schottky barrier” is a misnomer. In a Schottky
barrier, the distribution of charge and voltage is governed by
space charge and band bendings through Poisson’s equation,
something that is allowed when the device can be considered
stretching to infinity in the dimensions (y, z) perpendicular to the
current (x). The actual area of the interface then only enters as a
scaling parameter. The presence of the gate breaks this symmetry
and the reduced thickness further undermines the validity of the
Schottky-barrier analysis. As discussed in the beginning of this
work, in a TFT, the charge at any point is determined by the
local voltage relative to the gate. We will now present a model
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Fig. 4. Simulations of I–V curves of FETs with contact resistance R as indicated for gate bias from 1 to 10 V. Parameters as in Table 1. Absolute currents and voltages
shown.

for an accurate description of the effects of metal–semiconductor
contacts in TFTs, that is based on this idea.

As a starting point, we observe that the structure, at first
glance, seems similar to MOS-FET devices with pn-junctions
at the electrodes. There, n-type (p-type) electrodes are inject-
ing electrons (holes) into the electron-channel (hole-channel) in
a p-type (n-type) layer. In this case, no non-linearities result,
as demonstrated in the chapter on MOS-FETs of the book of

Fig. 5. Transfer curves for various values of contact resistance. Parameters of
the ideal FET given in Table 1. Absolute currents and voltages shown.

Sze [10]. In these devices the electrodes are made of the same
material (with different doping) as the channel. When a bias
is applied, at the threshold voltage two effects occur simul-
taneously: (1) free charge is induced in the channel; (2) the

Fig. 6. Comparison of the Schottky-barrier-limited model of Eq. (5) (solid) with
the basic TFT model of Eq. (3) (dashed). The latter saturates typically after some
volts whereas the former already saturates after Vds � 3kT/q (80 mV at 300 K).
The inset shows a zoom-in at the low voltage region. Parameters of the simulation
are give in Table 1.
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pn-junctions at the electrodes disappear. When the charge in the
channel is exactly equal to the charge density in the electrodes
(at Vt), by definition, the bands on both sides of the barrier have
aligned. For organic thin-film FETs these effects might occur
at different voltages, since the electrodes and the active layer
are not made of the same material. The threshold voltage for
creating a charged channel is zero, as shown above, but at zero
bias, the (Schottky) barriers might still exist, limiting the current.
A fundamental difference between a TFT and an MOS-FET is
in the dimensions. Fig. 7a shows the energetic band diagram
before contact, EC and EV are the conduction band and the
valence band in the semiconductor, respectively. In the semicon-
ductor the Fermi level EFs is at mid-gap. Assuming the Fermi
level in the metal EFm to be lower, �EF ≡ EFs − EFm > 0, the
following happens upon making contact: electrons flow from

Fig. 7. Schematic energy diagram of a metal-contact TFT before (a) and after (b)
contact. The parameters are—EFm: Fermi level in the metal; EFs: Fermi level in
semiconductor before contact; EFf: Fermi level in semiconductor after contact;
EC and EV: conduction band and valence band, respectively; �V : voltage drop
at the interface and equal to the voltage in the channel, as shown in the inset.

the semiconductor to the metal, or holes from the metal to the
semiconductor. These holes p redefine the Fermi level in the
semiconductor to the new value EFf according to the Fermi–
Dirac distribution (simplified to the Boltzmann distribution):

p = NV exp

[
EV − EFf

kT

]
(6)

with NV the effective density of valence band states. This accu-
mulated charge in the channel implies a voltage relative to the
gate, determined by Eq. (1):

�V = qp

Cox
(7)

The two effects, moving of the Fermi-level and increasing of the
voltage caused by the charges, sum up to align the Fermi levels
across the device:

q�V + (EFs − EFf) = �EF (8)

Combining Eqs. (6)–(8) we find a voltage drop of

�V = kT

q
W

( q

kT
A

)
(9)

With W the Lambert-W function [48], and A equal to

A = qNV

Cox
exp

(
EV − EFm

kT

)
(10)

The voltage drop �V from the metal contacts to the semicon-
ductor channel is assumed to occur abruptly, as in metal–metal
contacts. In the absence of donors and acceptors that can store
immobile charge, or in accumulation, no band bending can exist.
Or better, any band bendings are caused by mobile charge in the
band and with the huge DOS of band states, the depletion width
can effectively be considered zero, as in metal–metal contacts.

Two extreme cases are worth to highlight. When the Fermi
level in the semiconductor does not change much by the accumu-
lated charge, (EFs − EFf) ≈ 0, for example in doped semicon-
ductors, the effect is nearly completely absorbed by the interface,
�V ≈ �EF/q and this can be substantial (in the order of volts,
depending on the starting difference of Fermi levels). In the
other extreme case, when only a small accumulation of charge
is needed in the channel to move the Fermi level substantially,
in the case of intrinsic semiconductors, the equation reduces to
(EFs − EFf) ≈ �EF and �V ≈ 0. It is interesting to compare
this to the voltage profiling experiments carried out by Bürgi et
al. [49], in organic thin-film transistors. They report on a small
voltage drop at the contacts, even in the absence of bias, exactly
as predicted above. Substituting the voltage of the channel into
Eq. (1), gives the zero-bias charge density in the channel. The
conclusion is that even without a bias it is possible to have free
charge in the channel. In other words, the device is a normally-
on FET with a positive threshold voltage. The charge density
and the threshold voltage can be tiny, though.

At the same time, the residual barrier at the interface, qφBp is
equal to the final depth of the Fermi level, EFf − EV, as can be
seen in Fig. 7. According to Eq. (6), this residual barrier height
is in the order of some tens of meV, and depends on the free
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Table 1
Simulation parameters used in this work (unless otherwise specified)

Parameter Value Unit

NV 1.04 × 1016 m−2

Cox 160 �F/m2

Vds −0.1 V
W 1 cm
L 10 �m
μ0 3 cm2 V−1 s−1

Eg 1.12 eV

carrier density, and thus on the gate-bias, and the temperature:

qφBp = EFf − EV = kT ln

(
Cox(�V − Vg)

qNV

)
(11)

As an example, for a device with parameters as in Table 1, at
T = 300 K, �V − Vg = 1 V, the barrier height is 61 meV. Rel-
evant, in view of this, is the report of a gate-bias-dependent
contact resistance in pentacene TFTs with an activation energy
of 80 meV [33], which we attribute to the residual barrier qφBp.

The effects described above are caused by the fact that before
contact the Fermi level in the semiconductor was higher than
in the metal. Using the same reasoning, a negative charge can
accumulate when EFs < EFm, and a negative threshold voltage
exists, resulting in a normally-off FET. Note that if these elec-
trons have low mobility, it may take time to establish this thresh-
old voltage. When acceptors are introduced into the system, the
picture stays the same, as long as the device is in accumulation,
meaning positive charge or neutrality everywhere. When the
device goes, for reasons of bias or contact effects, into depletion
or inversion, with negative immobile charge on the acceptors,
the picture changes, since then band bendings and space charge
can start playing a role.

After contact, there is a residual barrier with height qφBp
equal to the difference in Fermi level in the metal and valence
band VB in the semiconductor. It is important to point out the
difference with a Schottky barrier. There, the bulk Fermi level
and thus the barrier height is constant and depends only on the
workfunctions of the materials, whereas in an FET the Fermi
level in the bulk, and thus the barrier height, can be programmed
by the gate. When free charge is present in the channel, the Fermi
level (in the semiconductor equal to the metal) is close to EV and
the barrier is virtually zero (some tens of mV). No substantial
barrier can exist above threshold voltage. It is unlikely that the
barrier is the current-limiting factor.

5. Threshold voltage and sub-threshold current of
intrinsic TFTs

It is common practice to use the threshold voltage and the sub-
threshold current as device-evaluation parameters [10]. They are
often used to extract information about impurity concentrations,
traps and interface states. In the context of the two-dimensional
model described above, it is important to understand the physical
meaning of these device parameters. In this section, we will
analyze the trap-free device based on intrinsic materials and
show that the threshold voltage and sub-threshold current do

have different behavior compared to the conventional MOS-FET
models.

As discussed in the previous sections, the threshold voltage
in TFTs is zero because, in the absence of localized states, orig-
inating from donors, acceptors or defects, all induced charge is
necessarily mobile. In the second part we will show how traps
can cause a non-zero threshold voltage. Here we will continue
by analyzing the sub-threshold current of trap-free devices.

In MOS-FETs, the sub-threshold current is exponentially
depending on the gate-bias as well as the drain–source bias.
The reason for this is that below threshold the free carrier den-
sity is exponentially depending on the local bias. (The energetic
distance between band edge and Fermi level is linearly depend-
ing on the voltage drop across the insulator and the free carrier
concentration is depending exponentially on this distance.) In
the linear region, the potential at the drain is slightly smaller
than at the source. Therefore, p is exponentially smaller at the
drain compared to the source. Such a high gradient in den-
sity causes the diffusion current to dominate. (Drift currents
are still insignificant because the densities are still too small.)
The gradient and the current thus depends exponentially on Vds
and Vg. The current is proportional to the difference in density
at the source and the drain, Ids ∝ exp(Vg) − exp(Vg − Vds) ≈
exp(Vds) exp(Vg), which leads to the equation normally found
in textbooks. Above threshold, the densities depend linearly on
the potential and drift currents exceed the diffusion currents.

Because thin films do not have space to accommodate band
bending, resulting in the basic equation (1), the charge density
does not depend exponentially on the potential as in MOS-
FETs, but always linearly. To make a crude analysis of the
sub-threshold current in TFTs we have to bring electrons into
the model and make three assumptions: (1) The charge, elec-
trons and holes, is homogeneously distributed over the channel
thickness. This is either the thickness of the active layer or the
diffusion length, whichever is smaller. For the calculation we use
a thickness of d = 1 nm. (2) The thermal equilibrium equation
of electrons and holes is maintained:

np = n2
i = NVNC exp

(
−Eg

kT

)
(12)

with ni the intrinsic electron density (note again that all units
of density are “per area”, including ni, NV and NC) and Eg
the electronic band gap. For small currents this holds. (3) The
electrons are immobile and do not contribute to current [50] (for
the ambipolar devices discussed later this third condition will be
abandoned). Then we have to imagine that the induced charge is
caused by the the difference between p and n, Eq. (1) becomes:

n − p = VgCox

q
(13)

The solution of Eqs. (12) and (13) is

p = −VgCox

2q
+

√
n2

i +
(

VgCox

2q

)2

(14)

For large negative voltages p � ni this reduces to the original
form; the currents are proportional to the gate voltage. For large
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Fig. 8. Carrier densities, p and n (solid lines), and the position of the Fermi level
(dashed line) as a function of bias. Assuming electrons have zero mobility, the
current in the linear region is proportional to p. Parameters as in Table 1.

positive voltages, the sub-threshold current can be shown to be:

Ids ∝ p = 2

(
qni

VgCox

)2

(15)

i.e., not exponential. To give an idea, the interval at which the
currents goes from two times to half the zero-bias current is

Vg = ±3qni

Cox
(16)

and is in the order of nano-volts. Fig. 8 shows the position of
the Fermi level and the charge densities as a function of bias.
The example is for a silicon TFT. For materials with wider band-
gap, such as most organic materials, the sub-threshold current
is even much less. Therefore, for all practical purposes, the sub-
threshold current can be ignored.

6. Ambipolar devices

In the preceding text it was assumed that the mobility of
the free electrons was so low as never to contribute to current
μn ≈ 0, even when electrons are injected into the conduction
band [50]. For this reason, when the gate bias is positive, and at
no place in space free holes exist, but only immobile electrons,
no current is possible. We will now extend the idea and show
what happens when electrons have a mobility comparable to that
of holes. When ignoring the sub-threshold (“minority carrier”)
concentrations, the basic equations are replaced by

V (x) > Vg : p(x) = Cox[V (x) − Vg]

q
(17)

n(x) = 0 (18)

V (x) < Vg : p(x) = 0 (19)

n(x) = Cox[Vg − V (x)]

q
(20)

and

Ix(x) = qW
[
p(x)μp + n(x)μn

] dV (x)

dx
(21)

with μp and μn the effect field-effect mobility of holes and
electrons, respectively. In the general case, the solution is not

just treating the device separately as p-channel and n-channel
devices and then summing the currents, because both types of
charge and current can exist at the same time in different parts
of the device (with carrier recombination at the transition point
in space). When the gate bias is outside the range 0–Vds it has
only one type of charge throughout the device and it can be
treated as a p-channel or n-channel device. Care has to be taken
when Vds and Vg are not of the same sign. It can be shown, by
using device symmetry operations and potential offset invari-
ance, that this, effectively, is equal to subtracting the drain bias
from the gate bias and inverting the drain–source potential. As
an example, Vds = 1 V and Vg = −5 V is equal to Vds = −1 V
and Vg = −6 V and the current is totally p-type. A more compli-
cated case exists when the gate bias is in the range between the
drain and source potential. In this case, there exists a region of
length Ln with free electrons and a region of length Lp with free
holes, see Fig. 9. At the junction point, the potential is equal to
the gate-bias. When we assume that at this junction the electron–
hole recombination is not the limiting factor, we can treat each
region as an FET in saturation. Then, demanding equal current
in both regions (example for Vds > 0):

1

2

W

Lp
Coxμp

(
Vds − Vg

)2 = 1

2

W

Ln
Coxμn

(
Vg

)2 (22)

and knowing that the total length is equal to the channel length:

Lp + Ln = L (23)

will yield (for Vds > 0):

Ids = 1

2

W

L
Cox

[
μnV

2
g + μp

(
Vds − Vg

)2
]

(24)

In the same way can be found for Vds < 0

Ids = −1

2

W

L
Cox

[
μn

(
Vds − Vg

)2 + μpV
2
g

]
(25)

Fig. 10 shows transfer curves of ambipolar devices. The thick
parts of the curves indicate this dual-injection regime. The min-
imum of a particular transfer curve can be found by taking the

Fig. 9. Charge distribution and potential in an ambipolar TFT when the gate
bias is in between the drain and the source bias. For this conditions, the device is
in a dual-injection regime, with a zone of positive and zone of negative charge.
In this example: μp = 2μn, Vds > 0 and Vg = Vds/2.
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Fig. 10. Transfer functions for ambipolar devices for drain–source biases as
indicated. The thick parts of the curves indicate the dual injection regime as
shown in Fig. 9. The solid curves are for negative drain–source biases whereas
the dashed curves are for positive Vds. Parameters as in Table 1, and μn = 0.1μp.

derivative of Eqs. (24) or (25) and putting to zero:

V min
g |Vds<0 = μp

μp + μn
Vds (26)

V min
g |Vds>0 = μn

μp + μn
Vds (27)

Imin
ds = 1

2

W

L
Cox

μpμn

μp + μn
V 2

ds (28)

The ratio the positions of the minima in positive and negative
bias thus directly yields the ratio of electron and hole mobil-
ity and can serve as a rapid evaluation tool of the material
properties.

Since normal saturation does not exist anymore (no infinitely
thin zone can support a finite voltage drop), the effect on the I–V
curves is pronounced, see Figs. 11 and 12. Note the absence of
saturation for Vds > Vg. After initially settling on a plateau, as
for normal saturation, the current continues to increase rapidly.
To highlight the effect, the mobilities were chosen more similar
here (μn = 0.3μp).

There are many reports in literature about ambipolar TFTs
[44,51–55]. At first sight, the curves presented here are slightly

Fig. 11. I–V curves in logarithmic scale for ambipolar devices for gate biases
as indicated. The thick parts of the curves indicate the dual injection regime as
shown in Fig. 9. μn = 0.1μp.

Fig. 12. I–V curves in linear scale for ambipolar devices for gate biases as
indicated. The thick parts of the curves indicate the dual injection regime as
shown in Fig. 9. μn = 0.3μp. The curves have been scaled by the gate bias for
visibility.

different from curves reported in literature. It has to be born
in mind that the simulations assume a zero threshold voltage
for both the n-channel and p-channel. In reality this thresh-
old voltage can be substantial and this distorts the curves. In
first instance, it will shift the transfer curves of Fig. 10 by the
threshold voltage if Vt is equal for hole conduction as electron-
conduction. The picture becomes more complicated when they
are different. Even worse is the case when the threshold voltage
is changing during the measurements, in so-called stressing [56].
This also allows for a separation of the n-channel and p-channel
threshold voltages when the stressing is substantial in the time
scale of the measurements.

7. Summary and discussion of trap-free TFTs

The model presented here is based on a single postulate,
namely rigorously maintaining the linear charge–voltage rela-
tion of Eq. (1). As examples of things that are not included are
diffusion currents, band-bendings and flat-band voltages. For
inversion-channel MOS-FETs these are essential to explain the
electrical characteristics. As we have shown, for thin-film FETs
they are not needed. In spite of the simplicity of the model, it
manages to explain the basic electrical characteristics of TFTs
very well. To justify the simplicity of the model we use Occam’s
Razor; everything that is not essential in a model to explain the
data has to be removed to come up with the best model.

The major question is then: what are the essential ingredients
for a transistor? Why do some materials result in good transis-
tors and others not? Analyzing the model, it can be said that
the only thing that is needed is that the active layer is made of
a semiconductor material with a high charge carrier mobility.
When a transistor based on a certain material does not show
good transistor behavior, it is probably due to low mobility, for
instance because it is limited by the presence of a huge amount
of traps (as shown in the second part of the document).

Moreover, there are no restrictions as to the dimensions of the
device. In the MOS-FET model a device has a minimum size,
both in the direction of the current, because the contacts are
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pn-junctions, as well as in the direction perpendicular to current
because extended band-bendings are needed to induce a channel.
A TFT does not need band-bendings, neither at the contacts,
nor to induce a channel. It is therefore foreseen that a TFT can
be made from three molecules. One very conductive molecule
serves as metal and another has a LUMO–HOMO separation
which would qualify it as a semiconductor and serves as active
material that accommodates the channel. These two molecules
need then be separated by vacuum or any material with high
band-gap, making it an insulator. The lower limit for the scale
of such a device is then determined by the state of technology
of molecular engineering.

The similarity of the basic equation, Eq. (3), and the shapes
of the curves of Fig. 2, with those obtained for inversion-channel
MOS-FETs [10], might explain the persistence in literature of
using the MOS-FET model to describe TFTs; empirically, the
curves are the same. The complications start when the measured
data are analyzed and parameter extraction is attempted. As a
good example may serve the determination of the donor density
from the threshold voltage, something that is common for a
p-type inversion-channel MOS-FET, but does not make sense
in the TFT framework, since the doping concentration is not a
parameter in accumulation TFTs.

The effects of the contacts were discussed. In literature, con-
tact effects are often mentioned as a source for non-linearities.
Here we showed that neither contact resistance, nor contact
Schottky barriers can explain non-linear I–V curves (for TFTs
as well as MOS-FETs). Then, the metal contacts were analyzed
in more detail for TFTs. The conclusion was here that these can
cause a (tiny) threshold voltage. More important, it shows that
the channel can have a potential, even in the case of zero bias.
This is relevant in view of the experimental observation of such
a voltage drop [49].

Finally, ambipolar devices were discussed. The type of
ambipolar device discussed is one in which in the same mate-
rial for both holes and electrons the mobility is high enough to
allow for an appreciable current. There exist other technological
solutions of making ambipolar devices, such as hetero-devices,
with an electron-transport layer on top of a hole-transport layer,
or vice versa, but such devices are not studied here. The material
itself is assumed to be intrinsically ambipolar.

Diffusion currents are not considered in the model. There is
a fundamental reason for that which becomes clear when we
compare it to the MOS-FET model. For an MOS-FET, below
threshold, the charge density is exponentially depending on the
voltage [10]. Since, in the linear region, the voltage is slightly
higher at one electrode compared to the other, the density is expo-
nentially larger there. Hence, a large density gradient exists in
the channel below threshold. In a TFT, however, the densities
depend linearly on the local voltage and no large density gra-
dients can exist. Therefore, in a TFT, the drift currents, which
depend on the density and not on the gradient, always dominate
and the diffusion current is practically zero.

In the second part we will show that we have to extend the
model to describe things like field-dependent, bias-dependent
and temperature-dependent mobility as well as the transient
behavior.
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