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Abstract

Based on the model of thin-film transistors in which the active layer is treated as two-dimensional, the effects of traps
are studied. It is shown that when abundant discrete trap states are present, the field-effect mobility becomes temperature
dependent. In case the traps are distributed exponentially in energy, a Meyer–Neldel rule for the temperature dependence
of mobility and current results. When also the mobile states are distributed in energy, in the so-called band-tail states, the
mobility is no longer thermally activated.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Organic materials for electronic components are
beginning to find commercial applications in con-
sumer electronics where they serve as low cost alter-
natives for traditional materials. The description of
the electronic behavior is still under debate while the
products are already for sale. However, for
increased control over the behavior, it is important
to determine what are causing the properties and
limitations of the final devices. An important
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organic electronic device is the thin-film field effect
transistor (TFT), used in, for instance, switching
elements in active matrix displays. Note that
recently it has been shown that organic TFTs,
because of the improved quality and accompanying
ambipolar character of conduction, can also be the
light emitting element [1,2]. Traditionally, these
devices have been described by the metal-oxide-
semiconductor field-effect-transistor (MOS-FET)
model [3], including those devices made of organic
materials [4], since this type of device is well estab-
lished and described and the behavior at first glance
is very similar to that of TFTs. There are however
some features that are difficult to explain in the
MOS-FET framework. One of the things that
.
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deserve extra attention is the temperature depen-
dence. Currents and charge-carrier mobilities of
MOS-FET devices based on silicon are basically
independent of temperature. On the other hand,
TFTs based on organic materials do normally not
show this characteristic; complicated temperature
dependencies are often observed and reported.

Probably, the most remarkable feature of TFTs
is the fact that, normally, the active layer is non-
compatible with the substrate in terms of crystallo-
graphic properties. Often, the thin active layer has a
different lattice parameter compared to the underly-
ing insulating material (see Fig. 1 for a cross-section
of a TFT). Take as an example a TFT made of sil-
icon grown on top of silicon oxide. Especially the
first mono-layers of silicon are impossible to grow
with a well-defined crystallographic structure. Inev-
itably, many defects are created. In fact, the silicon
becomes amorphous. Generally speaking, since the
material of the active layer has a lattice mismatch
compared to the insulating layer, defects are
unavoidable. These defects can be electrically active
and can, for instance, trap free charges that would
otherwise contribute to external currents. Thus,
these traps, normally distributed over the entire
bandgap of the semiconductor, can cause severe
modifications of the electronic properties of the
device. In the current work, we will show how traps
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Fig. 1. (a) Cross-section of a TFT device with the names of
parameters and variables used in the current work. (b) Repre-
sentations of Eq. (3) with parameters as in Table 1 and
L = 10 lm and W = 1 cm.
change the temperature dependence of the parame-
ters of TFTs. Moreover, as we will show, the tem-
perature dependence can shed light on the density
of states involved in electronic conduction.

One special case of temperature dependence is
the Meyer–Neldel Rule (MNR) [5]. The MNR is
an observation which states that the magnitude of
a process is dependent on a certain parameter, but
that the dependence disappears at the iso-kinetic
temperature. This behavior is truly cross-disciplin-
ary as it is found back in many processes in nature,
such as diffusion and conduction. Although not lim-
ited to the process of electronic conduction, we
focus here on this field. As an example there is the
observation of the MNR for ionic conductivity [6],
glassy [7], poly-crystalline [8] and organic [9] materi-
als. We will show that the current and carrier-mobil-
ity of TFTs depend on the bias conditions in a way
following the Meyer–Neldel Rule when the material
has abundant traps that are distributed in energy.
This finding may be relevant in understanding such
observations reported in electronic devices (organic
and inorganic alike [10,11]). The Meyer–Neldel
Rule applied to the process of electronic conduction
in TFTs can best be described by the following two
points: (i) The activation energy of drain–source
current, Ids, or as-measured carrier mobility, lFET,
depends on the gate bias. (ii) There exists a temper-
ature, known as the iso-kinetic temperature TMN,
where the dependence of current or mobility on bias
disappears. In other words, when presented in an
Arrhenius plot (logarithm of the measured quantity
vs. reciprocal temperature), the curves of current or
mobility are straight lines that pass through or con-
verge to a common point. For amorphous silicon
transistors, based on the model of Shur and Hack
[13], we determined the immediate consequence of
the presence of abundant trap states to the observa-
tion of the MNR [15]. In the current work, we show
how the two-dimensional model for TFTs results in
similar results. However, the results are not identical
to the ones obtained with the MOS-FET model. The
results and the differences will be discussed.

2. Results and discussion

Where a MOS-FET is basically a three-dimen-
sional device, i.e., has finite thickness, a TFT is best
described by a in a two-dimensional way. Apart
from this, it is convention to use the inversion-chan-
nel model to analyze the TFTs, whereas most
organic TFTs are operating in accumulation mode.
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When these two things are taken into account, a
direct result is that there are no band bendings in
the active layer. In other words, all voltage drop is
absorbed by the insulator. The local density of
charge in the active layer is directly proportional
to the voltage drop across the insulator

qðxÞ ¼ Cox½V ðxÞ � V g�: ð1Þ
This charge can be either free holes p (for the cur-
rent work we consider a p-type accumulation chan-
nel TFT), or trapped charge NþT . At any given point
in the device, the current is proportional to the local
free charge density, the free-charge (band) mobility
l0 and the local electric field, dV(x)/dx:

IxðxÞ ¼ qWpðxÞl0

dV
dx

; ð2Þ

with q the elementary charge, and W the channel
width (the current density has been integrated over
the width of the channel to get the total current pass-
ing a line at position x). In the absence of any current
sources or sinks, the current Ix(x) has to be constant
over the entire channel length (0 6 x 6 L) and equal
to the externally observable current Ids (see Fig. 1a
for a cross-section of a device). In the absence of
any traps the charge is only free charge, q = p, and
it can easily be shown that in this case [14]

Ids ¼ �
W
L

Coxl0 V gV ds �
1

2
V 2

ds

� �
: ð3Þ

(See Fig. 1b for the IV curves). This result is very
similar to the current–voltage equations of MOS-
FETs [3]. For small drain–source biases, the qua-
dratic term Vds disappears from the above equation
and this is then called the linear regime.

Conventionally, for MOS-FETs, the field-effect
mobility lFET is defined via the derivative of the
transfer curve (Ids vs. Vg) in the linear regime:

lFET � �
L
W

1

CoxV ds

oIds

oV g

: ð4Þ

Equally standard is applying this definition of lFET

to TFTs, which then sometimes becomes bias or
temperature dependent. Furthermore, it can be sta-
ted that at low drain–source bias, in the so-called
linear regime, the charge density and electric field
can be considered homogeneous along the channel.
In this case, the current is proportional to the free
charge density, holes (p) in the case of p-channel
FETs. The mobility in the linear regime is thus pro-
portional to the derivative of the function of the
hole-density as a function of gate bias:
lFET ¼ �
ql0

Cox

opðV gÞ
oV g

: ð5Þ

For intrinsic TFTs this relation is linear. The as-
measured mobility is therefore bias independent.
(For this analysis we consider the intrinsic (band)
mobility l0 to be temperature independent; effects
of optical-phonon scattering, etc., are not included.
In any case, these are slowly varying functions of
temperature, such as T1/2 [3]). The function becomes
non-linear and the transfer curves with it, when –
and only then – the material is full of traps. As a first
attempt we try a discreet trap. In this case, the
mobility is lowered significantly by the reduced ratio
of free-to-total charge, and becomes temperature
dependent, but remains independent of bias. This re-
sult is similar to the model of Poole and Frenkel [3]
and the reasoning is as follows: Free holes (p) in the
conduction band, originally induced by the gate
bias, can be captured by the traps, turning these pos-
itively charged. At thermal equilibrium, the ratio of
densities of holes and charged traps NþT is deter-
mined by the energetic distance ET � EV between
them, the relative abundance of the levels, NV and
NT, respectively, and the temperature T (Note: since
the active layer is treated as purely two-dimensional,
all densities have units ‘‘per square meter’’):

p
NþT
¼ N V

N T

exp
EV � ET

kT

� �
; ð6Þ

where the Boltzmann statistics function was used
presupposing that the Fermi level is far away from
both the conductive as well as the trap state levels
(for the simulations, however, the full Fermi–Dirac
distribution was used). The total charge induced in
the channel is proportional to the gate bias (Eq. (1)):

p þ NþT � n ¼ �CoxV g=q: ð7Þ
The current is only proportional to the free hole
density because the trapped states, by definition,
do not contribute to current and the density of elec-
trons is insignificant. The solution of the above
equations is that the current is linearly proportional
to the gate bias and that the effective, as-measured
mobility of Eqs. (4) and (5), defined via the deriva-
tive of the transfer curve, is therefore depending on
temperature, but not on bias

lFET � l0

N V

N T

exp �ET � EV

kT

� �
: ð8Þ

In other words, the Arrhenius plots of mobility are
straight lines; independent of bias, the slope of the
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Fig. 2. Arrhenius plot of mobility for the case of an abundant
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Fig. 3. (a) Arrhenius plot of mobility for a discrete trap with
density equal to the effective density of valence band states,
NT = NV. The activation energy is equal to the trap depth for
biases below the trap-free-limit voltages Vg < Vtfl. For larger
biases, the mobility is no longer thermally activated and the plots
resemble those of trap-free devices. The insets show the schematic
DOS and the activation energy of mobility (and current). The
symbol � at the mobility axis indicates the free-hole mobility l0.
(b) The bias dependence of mobility at three different tempera-
tures. The trap-free limit voltage, Vtfl of Eq. (9) is indicated.
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plot reveals the activation energy of mobility, which
is then equal to the depth of the trap level,
Ea = ET � EV, see Fig. 2. This result is similar to
the Poole–Frenkel model [3], or the variable-range
hopping model of Horowitz [4]. Note that extrapo-
lation of the curves to T =1 gives an effective pre-
factor in the mobility equal to l1 = l0NV/NT,
which can be well below the free-hole band value
l0 when the traps are abundant. For the figure,
NT = 10NV was used.

The assumption was made here that the trap
states are truly abundant, effectively unlimited:
NT� NV. When this is not the case, the trap states
can be exhausted and, once all filled, the induced
charge is necessarily free charge (holes) and the
mobility returns to the band value l0. In the above
calculations, it involves replacing the Boltzmann
distribution approximation by the full Fermi-Dirac
distribution function. The traps become depleted
when the induced charge density is comparable to
the trap density. This defines the trap-free-limit volt-
age for the gate bias

V tfl ¼ �qN T=Cox: ð9Þ
In Fig. 3, a transition case is shown with the trap

density equal to the effective density of valence band
states, NT = NV. For this specific case, Vtfl =
�10.4 V. For gate biases below this voltage, the acti-
vation energy is equal to the trap depth (150 meV),
while above it, the mobility rapidly becomes inde-
pendent of temperature and settles at the free-hole
value l0, as can be seen in the figure. In this case,
it is not easy to give an algebraic solution. Fig. 3b
shows the bias dependence of the mobility for differ-
ent temperatures, which is based on numerical simu-
lations: For a certain bias Vg, the Fermi level that
zeros the total charge minus induced charge is found
by a numerical algorithm as described by Ref. [12].
Once the Fermi level is found, the free charge is
determined by substituting this energy in the free
hole distribution p(EF). The voltage is stepped by a
tiny amount and the free charge is calculated again.
The mobility is then the derivative according to Eq.
(5). (Remark: this technique was also used for
Fig. 2). As can be seen, for �Vg > �Vtfl the mobility
is equal to the free-hole value indicated by � at the
mobility axis. In fact, Eq. (9) gives a fast way of
determining the trap density, provided the rapid
transition in the transfer curves is observed that
allows for a determination of Vtfl.

Inspired by the model of Shur and Hack [13] we
then tried a model in which the trap states are dis-
tributed in energy. This, as we determined, can give
rise to a bias- and temperature-dependent mobility.
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Fig. 5. Graphical representation of temperature-dependent as-
measured mobility of Eq. (13) of a system with a DOS as in
Fig. 4, namely an exponential distribution of trap states and
discrete conduction states. Parameters as in Table 1, with gate
biases from �0.1 V to �20 V as indicated. The open circle (�)
represents the Meyer–Neldel point (TMN, lMN). The inset shows
the effective activation energy as a function of bias.

Table 1
Parameters used to generate figures

Parameter Value Unit

NV 1.04 · 1016 m�2

NT 1.04 · 1017 m�2

Cox 160 lF/m2

gT0 1018 m�2 eV�1

gV0 1017 m�2 eV�1

T2 800 K
T1 300 K
l0 3 cm2 V�1 s�1
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Using a normal valence band and trap states NT

exponentially distributed in energy,

NTðEÞ ¼ gT0 exp
EV � E

kT 2

� �
ð10Þ

with E the energy of an electron, gT0 the density of
states (DOS) of traps at the valence band EV, k
Boltzmann’s constant, and T2 a parameter describ-
ing the distribution (the slope of a logarithmic plot
of the DOS, see Fig. 4). When following the same
reasoning as followed for the discrete trap, but with
a convolution over trap states in Eqs. (6) and (7), it
can be shown that the drain–source current is (see
Appendix)

Ids ¼ ql0

W
L

V dsNV

�CoxV g

qNT0ðT Þ

� �T 2=T

ð11Þ

with

NT0ðT Þ ¼ aðT ÞgT0

k2T 2
2

kT 2 � kT
ð12Þ

with a(T) a slowly varying function of temperature
(and therefore irrelevant for the discussion), oscil-
lating between 1 and 0.8 in the temperature range
0–T2, with a minimum halfway. The as-measured
mobility is proportional to the gate-bias derivative
of this function (see Eq. (4)):

lFET ¼
T 2

T
l0

NV

NT0ðT Þ
�CoxV g

qN T0ðT Þ

� �T 2=T�1

: ð13Þ

It is immediately clear that (i) the mobility depends
on gate bias and (ii) the dependence disappears at a
temperature T = T2, thus following the Meyer–Nel-
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Fig. 4. Density of states used for the last calculations (Figs. 5 and
6). The trap states (solid line) are exponentially distributed in
energy. For the conduction states, two distributions are tried: A
discreet band at E = EV and an exponentially decaying function
(dashed line). The former results in the observation of the MNR
with bias and temperature dependent current and mobility, see
Fig. 5. For the latter, only the bias dependence remains and the
temperature dependence nearly vanishes, see Fig. 6.
del Rule, with TMN = T2. Fig. 5 shows simulations
of the above equation with parameters as in Table
1. From this figure it can be seen that, because of
the effects of the factor T in the denominator of
the above equation, as well as the temperature
dependence of a, the iso-kinetic temperature falls
slightly below T2 and the curves do not exactly
extrapolate to a single point. However, in most
cases will the instrumental resolution be too low
to accurately determine this small deviation. Note
also the sharp drop in current when the temperature
approaches T2. This is due to the factor 1/
(kT2 � kT) in Eq. (12), which diverges for T! T2.
To our knowledge, no reports in literature exist
for measurements at or in the vicinity of the iso-ki-
netic temperature; in all cases, TMN is found by
extrapolation.

Analyzing Eqs. (11) and (13) it is easily shown
that the activation energy of the field mobility
(and current alike), as measured via the slope of
an Arrhenius plot, depends on the bias in the fol-
lowing way
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Ea � �
d lnðlFETÞ
dð1=kT Þ

¼ kT 2 lnðN T0Þ � kT 2 lnð�CoxV g=qÞ: ð14Þ

This is shown in the inset of Fig. 5. Thus, the acti-
vation energy of mobility or current does not reveal
the depth of an energetic level. Rather, it depends
on the parameters of the distribution (T2 and gT0)
and the bias.

At this moment it is interesting to point out the
difference between our model and the model of Shur
and Hack [13]. Where they have a factor of 2T2/
T � 1 in the exponent in the current, we have T2/
T (Eq. (11)). This results, in our case, in an infinite
iso-kinetic temperature for the current, whereas
they have TMN = 2T2 [15]. For mobility, both mod-
els arrive at TMN = T2; the dependence of mobility
on bias disappears at this temperature, as shown
by Eq. (13).

A more fundamental difference is that Shur and
Hack use exponential distribution for both the traps
states as well as the valence band states (the so-
called ‘‘tail states’’), where we use only a distributed
trap state, while we maintain a Dirac-delta function
for the DOS of the valence band. When we include
exponentially distributed tail states,

NVðEÞ ¼ gV0 exp
EV � E

kT 1

� �
; ð15Þ

with similar reasoning we arrive at a strongly bias
dependent, but temperature independent mobility
(see Appendix),

lFET ¼
T 2

T 1

l0

N V0ðT Þ
N T0ðT Þ

�CoxV g

qNT0ðT Þ

� �T 2=T 1�1

ð16Þ

with

NV0ðT Þ ¼ bðT ÞgV0

k2T 2
1

kT 1 � kT
ð17Þ

with T1 the parameter describing the distribution of
band-tail states, see Fig. 4, and b a function equal to
a but scaled with T1 instead of T2. Fig. 6 shows a
simulation of the mobility as a function of tempera-
ture and bias. Interesting in this respect is the obser-
vation by us of exactly such a behavior [16],
something that is inexplicable in the theory of Shur
and Hack.

Fig. 7 compares the various models described in
this work and the model of Shur and Hack [13].
For the latter we used a value of 0.484 eV for their
parameter EF0 and the value for their parameter gF0

(defining the density of states at EF0) can then be
found by extrapolating our gT0 to E = EF0 in Eq.
(10) and dividing it by 1 nm. This gives gF0 =
8.93 · 1023/m3 eV. As can be seen, the model of
Shur and Hack with conduction and donor states
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exponentially distributed in energy behaves much
like our model with only the trap states distributed
exponentially in energy. Noteworthy, the model of
Shur and Hack was developed for amorphous sili-
con devices based on the MOS-FET model with a
three-dimensional active layer, while our model is
based on the two-dimensional accumulation-chan-
nel TFT model.

In conclusion, we have shown that a material
that is full of traps (electronic states that can cap-
ture the free charge), when used in the active layer
of TFTs, results in a strongly temperature depen-
dent current and mobility. When the trap states
are distributed in energy the mobility also becomes
bias dependent, resulting in the observation of the
so-called Meyer–Neldel Rule. The iso-kinetic tem-
perature, the temperature where the as-measured
mobility is independent of bias, is equal to T2, the
parameter describing the DOS of the traps. When
also the conduction states are distributed in energy,
the mobility loses its temperature dependence. As
such, a set of Arrhenius plots for different biases
may serve as a rapid evaluation tool of the quality
of the material. More specifically, they give direct
insight into the density-of-states governing the con-
duction. In cases, where a sharp transition in mobil-
ity is observed in the transfer curves the density of
(discrete) traps can directly be determined via the
trap-free-limit voltage Vtfl, see Eq. (9) and Fig. 3b.

As a final remark, it has to be pointed out that in
this analysis at all times thermal equilibrium is
assumed. Especially, for deep traps this equilibrium
can take very long time to establish, in which case
the electrical characteristics will depend on things
such as the scanning speed and even the history of
the device in case of extremely deep electronic levels.
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Fig. 8. Graphical schematic of the distribution in energy of trap
states NT(E) (solid line) and charged trap states NþT (shaded area).
The latter is a result of a multiplication of the former by the
Fermi–Dirac function 1 � f(E) (dashed line). This shows that the
total trapped charge NþT as a function of Fermi level, see the
integral of Eq. (21), can easily be approximated by dividing the
integral into two parts.
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Appendix. Derivation of Eqs. (11) and (16)

To arrive at Eq. (11) a density of states (DOS)
exponentially decaying in energy is used,

NTðEÞ ¼ gT0 exp
EV � E

kT 2

� �
ð18Þ
with gT0 the density of states at E = EV and T2 the
decay rate, parameters that describe the distribu-
tion. The dependence of NþT on the position of the
Fermi level thus becomes

NþT ðEFÞ ¼
Z 1

�1
NTðEÞ½1� f ðE � EFÞ�dE ð19Þ

with f the Fermi–Dirac distribution function,

f ðE � EFÞ ¼
1

1þ exp½ðE � EFÞ=kT � : ð20Þ

The integral of Eq. (19) converges when T < T2. To
a good approximation, the solution can be found by
dividing the integral into two parts, see Fig. 8. In the
first part, below EF, the slope is 1/kT � 1/kT2 as a
result of the difference of slopes in NT and the expo-
nential approximation for 1 � f. Above EF, 1 � f is
considered unity and the resulting slope is 1/kT2.
With this help, it can easily be shown that the inte-
gral is equal to

NþT ðEFÞ ¼ NT0ðT Þ exp
EV � EF

kT 2

� �
; ð21Þ

where NT0 is as in Eq. (12) in which a(T) an ad hoc
correction factor that compensates for the error of
integration; compare the rounded distribution of
NþT of Fig. 8 and the triangular integration described
above. Numerical simulations show that a(T) oscil-
lates between 1 and 0.8 in the temperature range 0–
T2 (see Fig. 9). This makes NT0 essentially tempera-
ture independent for T not very close to T2. For
T P T2 the integral diverges.
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Fig. 9. The ad hoc correction factor a as a function of
temperature, calculated numerically. a is a slowly varying
function of T and its contribution to the calculation is minimal.
For the calculations, a is approximated by a third-order
polynomial (solid line).
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If the conduction states are assumed to be dis-
crete in energy, a standard valence band with NV

states at EV, the density of holes follows

p ¼ N V exp �EF � EV

kT

� �
: ð22Þ

These two densities of p and NþT can be introduced
into the induced charge equation (Eq. (7)), ignoring
the tiny contribution of the free electron density n

p þ pT=T 2
NT0ðT Þ
NT=T 2

V

 !
¼ �CoxV g

q
: ð23Þ

For high densities of traps, the first term is negligi-
ble and the free hole density can then easily be deter-
mined as

pðV gÞ ¼ NV

�CoxV g

qNT0ðT Þ

� �T 2=T

: ð24Þ

The current can then be found by Eq. (2), where in
the linear regime, p is homogeneous in space and
dV/dx = Vds/L. This results in Eq. (11).

Next, conduction states exponentially distributed
in energy are tried

NVðEÞ ¼ gV0 exp
EV � E

kT 1

� �
ð25Þ
with gV0 the density-of-states at E = EV, and T1 a
parameter describing the distribution (see Fig. 4).
Similar integration techniques result in

pðEFÞ ¼ NV0ðT Þ exp
EV � EF

kT 1

� �
ð26Þ

with NV0 as in Eq. (17), in which b is a function sim-
ilar to a, but scaled with T1 instead of T2. Again,
this can be substituted in the induced-charge equa-
tion (Eq. (7)) and for high trap densities, the free
charge density follows

pðV gÞ ¼ NV0ðT Þ
�CoxV g

qNT0ðT Þ

� �T 2=T 1

ð27Þ

substitution into Eq. (2) and using the field-mobility
definition of Eq. (4) yields Eq. (16).
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