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 Electronic Transport in Organic Materials: Comparison of Band 
Theory with Percolation/(Variable Range) Hopping Theory 
 Percolation theory or hopping theory, used to describe the elec-
tronic behavior of devices, is very popular in the chemistry-
dominated research area of organic electronics. The reason is 
that chemists think in units (“moieties”) such as the phenyl 
ring in a polymer, with specifi c energy levels (for instance the 
lowest unoccupied molecular orbital (LUMO) and highest occu-
pied molecular orbital (HOMO)), and conduction of charge is 
considered a perturbation to the molecular electronic levels. A 
typical organic semiconductor consists of a one-dimensional 
chain — the conjugation backbone — along which current is 
visualized. Thinking in terms of conduction paths seems very 
natural and three-dimensional conduction in terms of 
“hopping” to neighboring conjugation segments seems an 
obvious approach. Charges reside on specifi c sites and only 
occasionally make a jump to neighboring units. This way of 
thinking has successfully described the low-conductivity end of 
the spectrum of organic materials, those materials that people 
imagine when they think of “plastics”. 

 The success of the percolation/hopping theory manifests itself 
in the easy explanation of some often observed phenomena, 
such as the following: i) Temperature-dependent charge-carrier 
mobility, see for instance the work of Mott (and his famous 
variable-range hopping equation: conductivity proportional to 
 exp[−(T0/T )1/4]  , with  T  the absolute temperature and  T   0  — like 
all  T i   in this work — a constant), [  1  ]  Shklovskii [  2  ]  (who changed 
the exponent in the Mott equation to  exp[−(T1/T )1/2]  ), and 
Aharony et al. (any exponent in between). [  3  ]  See also the numerical 
simulations by Bässler. [  4  ]  ii) Bias-dependent mobility, or, better, 
fi eld-dependent mobility. iii) Anomalous transients, described 
as the observation that the as-measured time-of-fl ight (ToF) car-
rier mobility depends on the sample thickness, also explained 
as the power-law behavior (to be discussed later). Indeed, these 
observations are often seen as proof of the validity of the perco-
lation/hopping theory. However, consistency of a certain model 
to the data alone is not good enough to prove the model, since 
there can be many models that do the trick. We have to high-
light the divergence between the existing models and design a 
way to arbitrate between them. Moreover, the winning model 
has to make sense and be simple, and not only be a set of math-
ematical equations, never mind how powerful in describing 
reality. For that we have to discuss them a little more. There is 
no use in going into a lot of detail, also because there are nearly 
as many models as there are publications in the literature or 
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measurement sets, but also because we will get bogged down in 
equations. Yet, it is useful to introduce the models globally, the 
families of models that is. That is the scope of this Essay. The 
equations will be kept here to a minimum. 

 The (variable range) hopping (VRH) theory is based on the 
idea that charges are localized but can every now and then 
jump (“hop”) to another localized state. The probability of hop-
ping between two states of spatial separation  R  and energy sep-
aration  W  is given by [  5  ] 

 
P(R, W) = exp

(
−a R − W

kT

)
  

(1)
   

with  k  Boltzmann’s constant, and  a  a constant. The total con-
duction can then be found as the integral over all energy 
states and distances, which can be worked out into the previ-
ously mentioned Mott equation or Shklovskii and Éfros equa-
tion when a particular state distribution and dimensionality is 
used. Note that the original theory was not intended to be used 
for conductive materials. Mott had a dilute system in mind, or 
based it on such a system. As he himself wrote: “The process 
is similar to ‘impurity conduction’”, [  1  ]  or Shklovskii and Éfros: 
“we use mainly hopping conductivity of weakly doped semicon-
ductors”. [  6  ]  Such materials are of low conductivity, where the 
conduction takes place by hopping between distant, localized 
states. It is questionable whether the theory can be transposed 
to any low-mobility material — materials that superfi cially 
seem to behave the same, but intrinsically are very different — 
as is conventionally done by the organic materials community. 
The localized states — conjugated segments in organics — are 
in fact adjacent in amorphous materials and conduction takes 
place between states of the host, not via dilute impurity levels. It 
is questionable whether the application of Mott’s idea to amor-
phous materials, as done by Ambegaokar et al. [  7  ]  and picked up 
by many others, is justifi ed, even if it is mathematically correct 
and is consistent with the experimental data. 

 Percolation theory is closely related to VRH theory and is 
often mentioned in one breath (“the transport of current in 
a disordered system with localized states, which is realized 
by hopping of electrons from one state to another, should be 
regarded as a percolation process” [  6  ] ), something that we will 
also do here in this Essay. The reason is obvious when we take 
a look at what goes on in the hopping regime. The effective 
hopping radius, the distance  R  where the hopping for available 
energies is still reasonably possible for a certain temperature 
 T , can be calculated, and this thus results in a sphere around 
the impurity that is effectively conductive. There then exists a 
critical radius where the spheres marginally touch each other, 
thereby forming a network of interconnected conductive mate-
rial spanning the entire sample through which current can 
marginally percolate, [  8  ]  just like water can percolate through 
GmbH & Co. KGaA, Weinheim Adv. Mater. 2011, 23, 3356–3362
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the marginally interconnected pores in a ground-coffee-bean 
powder. For this reason, the names percolation theory and VRH 
theory are often fused. See for instance the pioneering work of 
Shklovskii and Éfros [  6  ]  or the review by Tessler et al. [  9  ]  on perco-
lation/hopping theory. 

 Serious doubt was already shed on the validity of these 
theories for conductive organic materials by Rakhmanova and 
Conwell [  10  ]  (energies need to be correlated), Waragai et al. [  11  ]  
(exponent is simple Arrhenius behavior,  exp[−(T2/T )1]  , that 
is, outside Aharony range), Nelson et al. [  12  ]  (not thermally acti-
vated,  exp(T 0)  , i.e., outside Aharony range), among others, who 
prefer, for various reasons, the Poole–Frenkel formalism, which 
consists of (conduction and valence) bands supplemented 
with trap states. As an example, the Vissenberg VRH/percola-
tion analysis of the transistor [  13  ]  is predated by the Shur and 
Hack analysis using band theory, [  14  ]  which yields more-or-less 
the same results. This sheds some doubt on hopping theory for 
conductive materials. 

 Indeed, modern conductive organic electronic materials are 
not necessarily also best described by low-conductivity theories. 
An alternative to percolation/hopping theory is band theory, 
which is in fact much older. In this theory the individual energy 
levels of the unit cells — as they are now called — are irrelevant 
and only the band diagram of the entire crystal is of importance. 
The Schrödinger equation is solved for the crystal, which has 
Bloch waves as solutions, as we know from solid-state physics 
lectures. Because of the high level of delocalization and reduc-
tion of time spent on individual sites, a charge no longer belongs 
to a unit but rather to the entire crystal, resulting in an energy 
band structure. Moreover, for describing electronic conduvction, 
this entire band structure is summarized by two discrete levels 
(and an effective mass). We call this semiconductor-(device)-
physics band theory; see for example the book by Sze. [  15  ]  
The fi rst battle is thus won by band theory: Where there 
are often many theories that can explain data, the simplest 
model should be preferred. Without doubt, band theory is the 
simplest of them all. According to page 14 of the above book, 
electronic levels of the host are summarized as  NV   (full) levels 
at energy  EV   and  NC   (empty) levels at energy  EC  , the valence and 
conduction bands, respectively. Yet, in spite of its simplicity, it 
explains the workings of all semiconductor devices as shown 
in the next 800-plus pages of the book. The question is, can the 
same theory also be used for organic (amorphous) electronic 
materials? Yes, it can. With some modifi cations, namely the 
addition of trap states. 

 As a direct bonus of band theory, the often observed fi eld-
dependent mobility of the form

 
: ∝ exp

(
1

kT

√
E

E0

)

  
(2)

    

 ( E    is electric fi eld,  E0 = Bg / q  ,  g    the permittivity of the material, 
and  q    the elementary charge) results directly, since placing the 
effective-mass hydrogen-like Coulomb potential of a discrete 
trap on an inclined potential slope of a constant fi eld will lower 
its thermal ionization barrier on one side by exactly  

√
E /E0  , 

as shown by Frenkel nearly a century ago in a one-page com-
ment, [  16  ]  beautiful for its sheer simplicity. 
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   Figure 1   and  Table    1   summarize the various conduction 
models, ranging from hopping, where only trap states exist 
and charge has a small mobility in the form of infrequent 
hops, to the Poole–Frenkel formalism, where traps states cap-
ture a large part of the charge, fi xing it in place, and conduc-
tion occurs by temperature- and fi eld-assisted excitation from 
the trap to conductive bands (the model is also often called 
multi-trap-and-release, MTR for short), and to the pure crystal 
models that have no impurities and where the mobilities reach 
the upper-limit value of the bands. For completeness sake, also 
the hybrid-model dual-formalism of a (distant) band combined 
with direct (variable range) hopping is given, which is often 
used in low-conductive inorganic semiconductors such as non-
stoichiometric GaAs. [  17  ]  

 The band theories were derived for crystalline materials 
because, apart from their superior performance, by using crys-
tals science progressed more rapidly; crystal-growing communi-
ties could spend their time on optimizing the crystalline quality 
and purity, while a community of experimental researchers and 
theoreticians worked on describing them, with the interaction 
between these groups essential for the accumulation of knowl-
edge. In fact, this focus on pure and crystalline materials initially 
meant putting semiconductors aside as being of no interest to 
the solid-state physics community because their behavior, as 
we all know, depends too much on the purity of the material. 
Important to note, the fact that the theories were developed and 
tested with crystalline materials does not mean that they are 
valid  only  for crystalline materials. It had already been pointed 
out long before the advent of the new wave of organic research 
that crystallinity is in no way needed to give a material semi-
conducting (band) properties. As shown by Ioffe, Regel, and 
Gubanov: “A periodic electric fi eld of the lattice is not essential 
for the occurrence of typical semi-conducting properties and 
the band model may be applied also in the case in which there 
is a loss of periodicity of the lattice” (a citation from the work 
of Caserta et al. [  18  ] ). In other words, the fact that most organic 
electronic materials are in the amorphous state does not by 
itself warrant them a special treatment. Obviously the non-
crystallinity lowers their performance, but the electrical descrip-
tion can remain basically the same. In our research we have 
thought along these lines: “It walks like a duck, it talks like a 
duck, so it is a duck”. In practice we have worked out that using 
band theory, with the inclusion of traps in the model, as in 
Poole–Frenkel/MTR, gives no problem whatsoever in describing 
all the organic electronic materials and devices, summarized in 

    Figure  1 .     (N-type) conduction models from Table  1 . a) Hopping/percola-
tion. Conduction consists of infrequent jumps from one localized state to 
another. b) Hybrid (hopping  +  Poole - Frenkel). c) Poole - Frenkel (MTR). 
Conduction consists of charge being promoted to delocalized levels, 
where it can move freely. d) Crystal/band theory. Conduction occurs in 
the conduction band (for electrons). The dashed line is a donor level that 
supplies the surplus of electrons but plays no further role.  

EC

EV

ET

EC

EV

EC

EV

ETET

a) b) c) d)

Hopping Hybrid Poole-Frenkel Crystal
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Y    Table  1.     Comparison of different models. Density of states (DoS) 

and charge mobility ( μ ) of delocalized (“band”, “conduction”, C) and 
localized (“trap”, T) states. 

Model Band Trap

DoS mob. DoS mob.

VRH/percolation 0 –  N  T  μ  t 

Hybrid  N  C  μ  n  N  T  μ  t 

Poole - Frenkel/MTR  N  C  μ  n  N  T 0

Crystal  N  C  μ  n 0 –
the book  Electrical Characterization of Organic Electronic Materials 
and Devices . [  19  ]  This includes the pheno mena mentioned above: 
temperature-dependent mobility, bias-dependent mobility, and 
anomalous transient effects. A temperature-dependent mobility, 
for instance, is caused by the temperature-dependent thermal-
equilibrium ratio of trapped and free charge. The effective 
mobility is the weighted average of band mobility and trapped 
mobility: If 10% of the charge is free and 90% trapped, then, 
because the mobility of trapped charge is, by defi nition, zero, 
this results in a reduction of a factor of ten relative to the band 
mobility. Similarly, bias and associated Fermi-level shifts can 
have a different effect on the occupancy of traps and conductive 
states, because they are differently distributed in energy, and 
hence a bias-dependent mobility results. Moreover, all kinds of 
transient effects on all time scales occur because the relaxation 
times for establishing thermal equilibrium depend exponen-
tially on the energy gap being bridged by the capture and emis-
sion of charge at and from traps.   Figure   2 shows the modifi ed 
band diagram presented by Shur and Hack, [  14  ]  which includes 
trap states and conduction states exponentially distributed in 
energy, that was successfully used to describe the electronic 
behavior of amorphous materials such as a-Si and most organic 
materials.    

 Now that the theories are introduced, the reader will prob-
ably ask the very pertinent question that easily springs to 
mind: If crystalline materials are irrefutably described by band 
© 2011 WILEY-VCH Verlag Gwileyonlinelibrary.com

    Figure  2 .     Band diagram of amorphous semiconductors (after Shur and 
Hack [  14  ] ) with conduction levels (“tail states” of conduction and valence 
bands, arbitrarily positioned at  E  C  and  E  V , respectively) and trap levels 
exponentially distributed in energy. This results in bias- and temperature-
dependent as-measured mobilities [  19  ,  20  ]   
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theory and amorphous materials supposedly by hopping theory, 
then where is the magic delimitation? What is the degree of 
amorphousness (randomness) that will make us need to use 
hopping theory instead of band theory? While the scientifi c 
community likes to express this demarcation in a value for 
the mobility (say about 10  − 5  cm 2  V  − 1    s  − 1   , a number that makes 
sense somehow, since the mobility is related to average time 
spent on a site and via Heisenberg’s Uncertainty Principle to 
the width of the energy levels — yet, Heisenberg does not relate 
time  �t   to space  �x  ), the question is whether this demarcation 
is needed. How can it be, for instance, that the same material 
pentacene when crystalline has high mobility and in amorphous 
form has low mobility (some six orders of magnitude different). 
If charge is trapped on pentacene’s benzene rings, as hopping 
theory tells us, it is trapped on the benzene rings regardless of 
the crystallinity of the material. The long-range order should 
not matter (hopping to a rotated, differently oriented molecule 
is not expected to be of signifi cantly lower probability, certainly 
not six orders of magnitude). It cannot be the amorphicity that 
lowers the mobility. Let us take this thought a little further. 
Amorphous materials differ only very slightly from their crystal-
line counterparts, chemically. Take the example of amorphous 
and crystalline silicon.  Both  have covalent bonds, formed by sp 3  
hybridization. In amorphous silicon there is some sp 2  hybridi-
zation, but this is not even very common. As Clark writes in his 
analysis of ab initio amorphous silicon and carbon calculations: 
“It is found that most atoms are four-fold coordinated [ … ] while 
only a few atoms are either 3 or 5 fold coordinated.” [  21  ]  The 
material is less dense, but only slightly so (about 5%, [  22  ]  not 
enough to seriously reduce wave function overlap), nor has the 
density a large impact on the electronic structure: “A relatively 
large change in density and structure does little to change the 
electronic nature [band structure] of the samples”. [  21  ]  

 If they are chemically similar, why not physically (electri-
cally) as well? Remember that those covalent bonds, the interac-
tions between atoms, are the origin of the formation of band 
structure and delocalization. Where have the bands in hopping 
theory gone? The description of amorphous materials without 
the inclusion of bands does not make sense. Nor did the origi-
nators of hopping theory neglect them. The classical work of 
Mott, for instance, included, apart from the dilute hopping 
levels, also the conduction and valence bands. [  1  ]  By treating only 
extreme low temperatures, these bands were made irrelevant by 
the fact that thermal excitation to these conductive band states 
becomes energetically too expensive at these low temperatures. 
This treatment cannot be applied to amorphous materials, not 
to the intrinsic conduction of amorphous materials themselves. 
This needs further explanation. 

 What makes the amorphous materials differ from crystalline 
materials is that, apart from the covalent bonds, the material 
also has unbonded — or rather under-bonded and over-bonded 
— atoms with unpaired electrons. Or, in other words, apart 
from the existence of delocalized states it also possibly has 
localized states, traps, and they can be very abundant indeed 
(on the order of percents). This is the idea of modifi ed band 
theory (Poole–Frenkel, or MTR). Also, both types of states can 
be distributed (“randomized”) in energy, as in Figure  1 , based 
on the ideas of Shur and Hack. [  14  ]  In this theory, the degradation 
of mobility is explained by the continuous increase in trapping 
mbH & Co. KGaA, Weinheim Adv. Mater. 2011, 23, 3356–3362
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centers caused by the introduction of non-perfect interaction 
bonds between moieties, viz. the dangling bonds in amorphous 
silicon, well known to be electrically active mid-gap trapping 
centers. Whereas a crystal has 100% conductive states and 
0% trap states, resulting in a high effective mobility equal to 
the unperturbed band-mobility given by effective mass theory, 
amorphous material has more trap states, with the band get-
ting less weight in the effective mobility, and the band mobility 
itself is also lower because of the increased defect scattering; 
the overall mobility can be orders of magnitude smaller,  without  
a necessary change in conduction model. It is a continuous 
effect, easily spanning many orders of magnitude. 

 Note the very important feature of the energy diagram of 
amorphous materials (Figure  1 ) that the trap states are reso-
nant and overlapping with the conductive states. It is thus not 
possible for  any  temperature to neglect one or the other, as is 
done in hopping theory. The band states are there  and  they play 
a role in amorphous materials. The work of Mott and hopping 
theory in general have been taken out of its scope and errone-
ously applied to intrinsic conduction of amorphous materials. 

 We can now look at some devices and measurement tech-
niques. The most popular device in organic electronic research 
is the thin-fi lm transistor (TFT). The reason for its popu-
larity — apart from the need for full-plastic electronics that 
necessarily include a switching (“control”) element — is that 
on the one hand it is the most easily fabricated (just smack 
your active material on top of a pre-structured FET substrate 
of gate, insulator, and drain–source electrodes and you’re off) 
and on the other the device works for seemingly all materials 
(actually, we have argued that a TFT  does  work for virtually all 
materials [  23  ] ) and is thus an ideal developer’s playground and 
material testbed. While the devices behave very much like a 
metal-oxide-semiconductor fi eld-effect transistor (MOS-FET) 
and MOS-FET modeling for TFTs is common in the literature, 
upon closer scrutiny they merit their own treatment (the main 
topic of my book on the subject of organic electronic materials 
and devices [  19  ] ). The fact is that they are very easily described 
by band theory. Both non-linearities in transfer curves (current 
vs. gate bias,  Ids  – Vg  ) and output curves (current vs. drain bias, 
 Ids  – Vds  ) can be explained in the framework of band theory if 
(abundant) traps are included. 

 The gate-bias-dependent mobility (empirically determined 
to be of the form  : ∝ V(

g   , with  (    a temperature-dependent 
constant) is a good example. If both the trap states and band 
states are exponentially distributed in energy (although with 
different energy constants), and the  total  gate-induced charge 
(both trapped and free) is a linear function of the gate bias 
( D = −VgCox   , with  Cox    the oxide capacitance), the  free  charge 
(and thus the current in the “linear” regime) follows a 
power law. [  20  ]  The mobility, being defi ned as the derivative of 
this transfer curve, is then also a power law (with exponent 
1 less). 

 Moreover, the non-linearities in the output curves (current 
vs. drain-source bias) are the direct result of the previously men-
tioned Poole-Frenkel concept that mobility depends on the elec-
tric (drain–source) fi eld in the presence of traps. An exponential 
(supralinear) rise in current is observed in the linear regime. 
There is no need for the philosophically diffi cult-to-justify [  24  ]  
“contact effects” that percolate the literature. The conclusion is 
© 2011 WILEY-VCH Verlag GAdv. Mater. 2011, 23, 3356–3362
that the thin-fi lm-transistor behavior is very well described by 
band theory. [  25  ]  

 We move on to the next topic. A powerful tool for the deter-
mination of the conduction model is the transient effect, or the 
“evolution” of the system. In crystals, a simple transient fol-
lowing the fi rst-order differential “master equation”, for instance 
the system with 100% of the charge at time zero trapped on a 
discrete trap, will show an exponential decay of trapped charge 
with a time constant that is thermally activated, approximately 
 J ∝ exp (EA /kT )  , with  EA   related to the trap depth. This is 
the basis for transient techniques to obtain the “fi ngerprint” 
of impurities, such as the deep-level transient spectroscopy 
(DLTS) technique, [  26  ]  that are very popular in semiconductor 
characterization. 

 Organic materials do not follow nice exponential transients. 
Theoretically derived, or empirically determined, they are either 
power-law or stretched exponential, 

∝ t−"   (3)   

 ∝ exp[−(t /J )$]  (4)   

respectively. The observation of the stretched exponential 
goes as far back as 1847, when Rudolf Kohlrausch started 
writing his papers on the subject. [  27  ]  The problem with the 
stretched exponential (and related functions) is that they are 
basically only empirical; all the functions are the result of 
empirical fi tting rather than theoretical analysis. Note that the 
same applies when the relaxations are measured in the fre-
quency domain, that is, in admittance spectroscopy: “Almost 
all the experimental data has been represented in terms of 
empirical fi tting functions. Two such [ functions] are the Cole–
Davidson and Williams–Watts function.” [  28  ]  On the other hand 
we have the power law (or Pareto distribution or Zipf’s law, 
the more common names in economics and sociology), which 
seems to be related to “countable” stochastic objects (number 
of earthquakes with certain magnitude, citations of papers, 
etc.), but also fi nds theoretical examples for more continuous 
phenomena. [  29  ]  With these two classes of functions seemingly 
mutually excluding each other, this offers us the prospect of 
shedding light on the conduction mechanism. However, nature 
has more tricks up its sleeve to confuse us. 

 Let us go back one step to explain this. In my book I made 
a strong case for the power law, since this more-or-less follows 
from the simple idea of making a convolution of simple mono-
exponential transients; [  19  ]  the same band theory, with expo-
nential distributions of the relevant energy levels that proved 
to be highly effective in explaining the behavior of nonlinear 
transfer and output curves in TFTs [  25  ]  presented above, was 
used to describe the transient behavior and the overall idea was 
that power laws should result. See also the work of Newman [  29  ]  
describing the power law, where he explains how the power law 
results from a combination of exponentials. In other words, a 
simple continuation of the band theory readily explains power-
law transient behavior. A single formalism of band theory with 
abundant traps manages to explain a wide range of phenomena 
in a wide range of devices and measurement techniques. 

 Yet, here percolation theory also predicts power-law tran-
sients (see for instance the time-of-fl ight theory of Scher and 
3359mbH & Co. KGaA, Weinheim wileyonlinelibrary.com
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 Montroll [  30  ] ) or the excellent percolation description in the work 

of Newman. [  29  ]  Thus, we have a stand-off and the unfortunate 
situation where experiments cannot arbitrate between models. 
This is especially unfortunate given the fact that in  practice  
stretched exponentials are more commonly observed in evolu-
tion experiments. See for instance the transistor reliability sum-
mary by Sirringhaus, that reports a stretched exponential. [  31  ]  It 
seems that in this case both theories fail instead of both being 
correct. 

 However, there is an easy explanation that puts everything 
into place. At least for the band-theory approach. Remember 
that in band theory the convolution of simple exponential tran-
sients results theoretically in a power-law transient. Now, for 
the power law to result, we need an infi nitely ideal system. [  32  ]  
For instance, it needs a mathematically perfect distribution 
of levels that stretch from plus to minus infi nity in energy. It 
needs the system in a well-defi ned “steady state”, etc. In prac-
tice this is not attainable. Such systems do not exist in nature. 
“In any fi nite critical system, it is well known that the power-
law description must give way to another regime”. [  32  ]  

 This is also represented in our power law. The underlying 
idea is that for instance the “average” energy of the levels, as 
found by an integral over all energies, should be converging 
(“alpha stable”) to result in a fi nite value. The density of states 
used in the work of Shur and Hack (Figure  1 ) is far from 
alpha stable; the integral of the DoS is infi nite. In the more-
realistic non-mathematically-ideal case, the power law is trans-
formed into a stretched exponential, as reasoned by Trzmiel 
et al. [  33  ]  In fact,  any  distribution of relaxation times will result 
in a stretched exponential, as a result of the central-limit theory: 
for large numbers of samples, any distribution will behave as 
a Gaussian distribution. Only those that are not integrable will 
escape this fate. This explains why stretched exponentials are 
experimentally observed and power laws theoretically predicted. 
Most theoretical scientists work with “ideal” systems that easily 
include energy distributions and relaxation-time spreads that 
go to infi nity. In practice, the convolution of mono-exponential 
relaxations, as used in band theory, will wind up being meas-
ured as a stretched exponential. 

 Interestingly, the conclusion that any system that has distrib-
uted properties (relaxation times, energies, etc.) will behave as 
a Gaussian-distributed system is relevant in view of the work 
of Bässler, who described all organic materials as “Gaussian” 
and manages to explain everything with his stochastic models. 
In view of the above, the behavior as a Gaussian system does 
not mean that the system is normally distributed. It just means 
that the distribution is alpha stable and has a fi nite integral. 
In other words, that it is a physically real system and not just 
somebody’s analytical thought product; any real, tangible, meas-
ured object is fi nite in all respects. It should be noted also that 
the resulting theoretical behavior, the power law  t−"  , does not 
itself have an integral from zero to infi nite time, making it an 
awkward beast in any case (imagine the time-of-fl ight current 
that does not integrate to a fi nite charge), whereas the stretched 
exponential does have a nicely converging integral. The integral 
of  Equation  4 is [  34  ] 

 

∫ ∞

0
exp[−(t/J )$]dt =

J
$

�

(
1

$

)
  

(5)
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which is fi nite for positive  $   , while the integral of  Equation  
3 is infi nite,

 

∫ ∞

0
t−" dt = ∞

  
(6)

    
 The above discussion explains why the stretched exponential 

has only empirical and stochastic (i.e., Monte Carlo simula-
tions) observations, where necessarily fi nite systems are used, 
since there is no clean theoretical or analytical justifi cation for 
it. Yet, it follows easily if we treat the behavior as a convolu-
tion of transients, that is, band theory with abundant traps, 
and consider the above formalism presented by Trzmiel et al.: 
“The stretched-exponential function is equal to the weighed 
average of an  α -stable effective relaxation rate. The latter is a 
consequence of the broad distribution of individual rates.” [  33  ]  
It remains to be seen if the theoretical power-law behavior 
can also easily be converted into a stretched exponential in the 
framework of percolation theory. For the moment this can be 
seen as a good argument for band theory. 

 On closer inspection, there seems to be a general problem 
with the transients in the framework of hopping theory. Note 
that there are basically two kinds of transients: i) “movement 
transients”, where charge is created on one side of the sample 
(for instance by a light pulse) and the charge moves across the 
device, and ii) “relaxation transients”, where the current slowly 
dies out under DC conditions. The fi rst type of transients are 
easily explained by hopping theory (and band theory alike), for 
instance in the ToF measurements. [  30  ]  However, for the second 
type of transients there is a fundamental problem. Why should 
hopping theory give a relaxation transient at all? In band theory 
it is obvious why. Charge is injected into the material and this 
is necessarily into delocalized states (well, it moved, didn’t it?). 
These charges, starting off in the delocalized states (“bands”) 
are slowly captured by localized states (“traps”) from where 
they cannot contribute to current anymore; the current is ever 
decreasing until thermal equilibrium is reached with trapped 
charge and mobile charge following a Fermi–Dirac distribution. 
For hopping theory, there are no delocalized states and charge is 
directly inserted into the localized states, that is, there is never 
going to be a relaxation. At best there will be relocation of the 
charge from one type of localized state to another, but this is 
exactly the same phenomenon as the transport of charge; trans-
port in energy is transport in space. While hopping theory can 
explain the behavior of the bulk in the steady state, it cannot 
easily explain the behavior of the entire device (with contacts 
and injection) and the relaxation effects. 

 Also interesting to note, and relevant for the current discus-
sion on relaxation transients, is the Weibull statistics. This is a 
distribution function that is often used to characterize failure 
rate, for instance in electronic components. In fact, Weibull is 
the most widely used distribution in reliability and risk assess-
ment. [  35  ]  The distribution is given by

 
f (x) =

k

8

( x

8

)k−1
exp

[−(x/8)k
]

  
(7)

   

for  x > 0   (and 0 otherwise), with  x    for example representing 
time  t    and  8    a scaling parameter. [  36  ]  This has three possibilities: 
If  k = 1  , the failure probability is constant, and the “survivors” 
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follow an exponential decay, as in nuclear decay processes; a 
specifi c surviving member has a probability of failure that is 
constant over time. For  k < 1   there is “infant mortality”, with 
survivors having ever less chance per unit time of failing. On 
the other hand, for  k > 1   there is an aging distribution, the 
failure probability increasing with time. What makes this rele-
vant for the current discussion is that the integral of the failure 
rate — or in other words the survival fraction — with a Weibull 
distribution gives the stretched exponential. (Note that these 
statistics are for fi nite systems.) The Weibull statistics idea can 
be mapped onto the organic conduction system. Trapping of 
charges from the conductive band to localized trap states can 
be seen as failure (to conduct). Even without knowledge of the 
underlying mechanism of trapping, the “empirical” Weibull sta-
tistics then results in a stretched exponential. 

 A fi nal remark on transients. If we assume that the transients 
are the result of convolutions of simple exponentials, we can 
reverse the convolution, in what is called an inverse Laplace or 
Fourier transform, and fi nd the distribution of time constants, 
and inverse-Laplace-transform again (assuming the time con-
stant depends exponentially on the energy depth) and fi nd the 
associated density of states (DoS). (Which sounds easier than 
it is, it being an ill-conditioned problem. [  37  ] ) The interesting 
thing is that such distributions and such forward and inverse 
transforms, when expanded and approximated, will result in 
equations containing tell-tale “unphysical” sine terms, [  38  ]  often 
encountered in the literature, see for example the work of Shur 
and Hack (specifi cally Equation 8 of that reference). [  14  ]  Unphys-
ical in the sense that it falsely suggests “periodicity”, by having 
terms like  sin(BT /T2)   . Remember that these theoretical works 
are only approximations (for instance  T � T2  ) resulting from 
applying mathematical tools to the physical problems. 

 We abandon here the transients and present another argu-
ment. Recently we reported in this journal on a puzzling device 
with intriguing behavior. Upon retrospect, this is very relevant 
for the discussion on the conduction mechanism. It consists 
of a TFT in which the active layer was formed by a metal, 
namely gold. [  23  ]  This was the direct result of extrapolating the 
theory of representing the TFT as a two-dimensional device, 
a basic ingredient of our description of organic accumulation 
TFTs. [  25  ]  As such, we were not surprised to fi nd that the device 
indeed works as a transistor, with a drain–source conductance 
programmed by the gate bias. Apparently, the material does 
not even have to have semiconductor properties to behave as 
a (typical) semiconductor device. In fact, the behavior of the 
metal transistor is very similar to any run-of-the-mill organic 
transistor. Similar modeling is thus justifi ed. What is puzzling, 
then, is the fact that the device can conduct even without a con-
tinuous path from source to drain. Currents in the microamp 
range were observed for devices in which the coverage by gold 
consisted of clearly isolated islands. While we are still puzzled 
by the exact results, this aspect is incompatible with percolation 
theories. 

 To explain this we have to take a closer look at percolation 
theory; see for instance the section “Phase transitions and crit-
ical phenomena” of the paper by Newman for a good introduc-
tion. [  29  ]  If we divide the two-dimensional surface of our TFT 
device into squares (the number and the size of these squares 
are irrelevant; percolation theory and power laws in general 
© 2011 WILEY-VCH Verlag GAdv. Mater. 2011, 23, 3356–3362
have the property of being scale-free [  29  ] ), then, in the frame-
work of percolation theory, a square can be either conductive 
or not. Clusters of continuously connected adjacent conductive 
squares will be formed. Obviously these clusters will be bigger 
the more squares are conductive. For 0% conductive squares, 
there will be no cluster whatsoever, while for all squares being 
conductive a single cluster exists that is made up of the entire 
surface. There is now a critical value for the percentage of con-
ductive squares that make a cluster marginally span from one 
end of the device to the other, that is, an infi nite conducting 
cluster size. This critical percentage is well known and can be 
calculated to be 59.27462 … %. Note the accuracy. In percolation 
theory this is the critical limit. We expect the current to shoot 
up from that moment on. 

 Our TFTs with various levels of coverage (0%, 30%, 50%, 
65%, 75%, and 90%) are then an excellent testbed for perco-
lation theory. We assume that gold is a good conductor and 
a square with gold is conductive, whereas uncovered silicon 
oxide is assumed to be made of insulating squares. The 
doubt about percolation theory is: How can there be substan-
tial current well below the critical coverage of 59%? The cur-
rent from 50% coverage to 75% coverage only increased by a 
factor of three; in fact, in the entire range of devices the cur-
rent rises continuously and gradually. No form of criticality 
is observed. 

 A device  visibly  without a continuous path is obviously below 
the percolation threshold. In the conventional percolation anal-
ysis, it consists of a network of disconnected resistances; no 
current should be possible. One of the strong points of percola-
tion theory is that one can visualize what goes on in the device. 
Apparently not. If this is lost, the support for the theory is lost. 
The (visible) absence of a physical path while the currents con-
tinue in a “business as usual” way, without any signs of criti-
cality, strongly undermines percolation theory. For band theory 
there is no problem. The bands are the result of interacting 
energy levels. These interacting entities apparently do not nec-
essarily have to touch each other, as long as they have overlap-
ping wave functions. (There remains only the puzzlingly large 
distance at which it apparently still works.) We thus consider 
the result of the metal transistor as an indication that band 
theory is more likely to be correct than percolation theory, while 
obviously still a great deal of research has to be done before a 
fi nal conclusion can be reached. 

 As an example, it is puzzling how in band theory the con-
ductivity and the transient time can depend on the sample 
thickness, often reported in the literature. [  30  ]  A reason might be 
that for thin devices the MTR approach used in band theory is 
no longer valid. In reality the device may be better described 
by few-trap-and-release, [  19  ]  and this might manifest itself in a 
sample-thickness dependence. 

 Of course, everything may be a matter of mere semantics. 
Hopping theory and band theory might blend into the same 
thing, some kind of Grand Unifi cation Theory for electronic 
conduction. As Tessler writes in his summary on electronic 
conduction in organic materials: “The conceptual leap in 
understanding transport in disordered media is realizing that 
current can also be the result of charge transport through local-
ized states.” [  9  ]  This might be true, but then it amounts to a con-
tradiction in terms; current being by defi nition delocalization, 
3361mbH & Co. KGaA, Weinheim wileyonlinelibrary.com
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 the above statement is equal to saying “delocalization takes 

place through localized states”. The truth is that when hopping 
occurs frequently and mobility is large, the localized states 
(traps) form a band and we are back to band theory. This is in 
fact what happens to conductive disordered materials, in our 
opinion. 

 In summary, in our opinion, if current is not a perturba-
tion but a signifi cant feature, as in electronic devices, band 
theory should be used. There is no need for new theories. If 
it conducts, band theory is good. In other cases, when only 
minute currents are present, in non-electronic materials or 
doped crystalline materials at extremely low temperatures, 
percolation/hopping theory might be a better description. 
Since electronic materials for modern electronic devices – the 
focus of this journal – fall necessarily in the conductive range 
of the materials spectrum, they are more adequately described 
by band theories. We do not consider this a closing argument 
to end the discussion, but this Essay rather points out that 
there exists an alternative explanation besides the more often 
used percolation theory for the behavior of organic electronic 
materials. 
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