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MCD for Dummies 
 
 

 
Before you lies the text that I have written when I was staying at the University of 
California at Berkeley (1995).  The text is intended as in introduction into the art of 
magnetic circular dichroism of absorption, MCD. Although the text should be enough 
to understand and work with MCD, I recommend reading the article of Stephens. In 
fact, this text is mainly based on his work. 

Peter Stallinga, Faro,2001 
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Introduction 
 
The purpose of this exercise is to show how MCD works. That is, to derive the form 
of the three terms in MCD, A1, B0 and C0 . This will be done on basis of simple 
intuitive derivations. First we will analyse the absorption spectra in the absence of 
magnetic fields where there is no difference between left and right circular polarized 
light. After that we will apply magnetic fields to the system and see how this will 
change the difference in absorption between σ+ and σ−. 
 
Optical Spectroscopy 
 
In Figure 1 the vibrational and electronic states of a general system are drawn. This is 
done in a special way in order to visualize it more clearly. First, the energy of the 
system is drawn as a function of the configurate coordinate. A configurate coordinate 
can be any combination of the real-space coordinates, for instance the “breathing” of 
the four atoms in a tetrahedrally surrounded atom, in which case the coordinate Q 
represents the (equal) distance of all four atoms relative to the central atom. When we 
have established what this configurate coordinate is the energy of the system can be 
expressed in it. In Figure 1 two electronic levels are visible, namely the two 
parabolas,. Each has a different value of Q at the minimum. This indicates that the 
systems in different electronic levels relax to different nuclear positions, for example a 
configuration in which the atoms are more separated. In each electronic level parabola 
the vibrational levels are indicated by horizontal lines. The atom(s) in each electronic 
level can vibrate around the rest position. The curvature at the minimum of a parabola 
indicates the ease at which it can do this and therefore this determines the level 
splitting of the vibrational states,∆E h= ω between two levels n and n+1. The 
vibrational states are normally closer in energy than the electronic states. 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1: Electronic ground state (G) 
and excited state (X) energy as a function 
of the configurate coordinate Q. E0 is the 
splitting between the minima, n and m 
indicate vibrational sublevels, and S is 
the Huang-Rhys factor. Absorption (ABS) 
and luminescence (PL) transitions are 
indicated. 
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In the figure we can see two types of optical electronic transitions, namely from the 
ground state to the excited state and the reverse. The first type of transitions costs 
energy and this is what is called absorption. In the other type the opposite happens; 
when the system relaxes to the ground state energy is released in the form of a photon 
and this we can detect in luminescence. This can be any type of luminescence: 
Depending on how the system is brought in excitation this is called 
electroluminescence (when voltage is applied), cathode ray luminescence (when the 
system is bombarded with fast electrons) or photoluminescence (when strong light is 
used to excite). In the following we will assume photoluminescence, although the 
relevant physics are identical for all types. 
 
Two approximations are made: 
1. Born-Oppenheimer. The electronic wave functions are separated from the 

vibrational wave functions:Ψ( , ) ( , ) ( )r R r R R= φ χ . This also means that the 
vibrational levels depend only on the curvature and position of the parabola. 

2. Franck-Condon: Optical transitions occur with the position of the atoms fixed. In 
Figure 1 this means that the optical transitions are vertical. 

In that case, the energy of a transition is in general 

E h E m nG= = − +ν ω ω0 � � X ,      

with h Planck’s constant, ν the photon frequency, E0 the electronic level separation, m 
and n the vibrational level quantum numbers (1/2, 3/2, .....) and hω the vibrational 
energy where G indicates the ground state and X the excited state. 
An important number in optical spectroscopy is the Huang-Rhys factor, S. This 
indicates the displacement of the excited state parabola compared to the ground state 
parabola. This, in its turn is a measure for the relaxation of the atoms in the two states. 
A large S means that the atoms change position significantly after an optical 
excitation, while S=0, or aligned parabolas, means no change of the atom positions. 

S k Q
h

= ∆ 2

2 ω
,       (2) 

with k the spring constant or curvature d d2 2E Q/  of the parabola, ∆Q the change in 
configurate coordinate for the two parabolas and hω the vibrational energy quanta. As 
can be seen in Figure 1, a large value for S shifts the absorption (ABS) to higher 
energy, while it shifts the photoluminescence (PL) to lower energy. This is the Stokes 
shift. For S=0 the Stokes shift is zero and the ABS and PL coincide in energy, while 
for increasing S they start differing more and more. 
For S=0 there is only one line in the PL and ABS spectra because the transition 
probabilities from the vibrational states n to m with n≠m are zero, because these states 
are orthogonal. To see why these states are orthogonal we can look at Figure 1 again 
and realize that for S=0 the parabola are equal in the ground and excited state and, as 
stated before by the Born-Oppenheimer approximation, then the vibrational levels are 
the same in the ground and excited states. In the ground state (or excited state) these 
levels are orthogonal because they are eigenfunctions. Therefore, the intensity from 
ground sublevel m to excited sublevel n (or vice verse) in absorption (or 
luminescence) is 0 unless n=m  

P n m Snm = =δ( , ) for 0 ,     (3) 

(1)
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If the Huang-Rhys factor is not equal to zero there can be a substantial contribution to 
the optical spectrum from transitions with m≠n as we will see now. 
At very low temperatures and in equilibrium only the lowest vibrational state (m=0) of 
the electronic ground state is occupied. In that case the relative ABS intensities to the 
various vibrational levels are (without derivation) 

P S S nn
n

0 = −exp( ) / ! .     (4) 
The zero phonon-line (ZPL), i.e., the transition in which no change of vibrational level 
occurs is at E0. From Equation 4 it can be seen that this is not always the highest 
intensity line. For larger S the peak of the absorption band occurs at higher energy, see 
Figure 2. For luminescence a similar analysis can be made. Since the non-radiative, 
vibrational relaxations are much faster than the radiative electronic relaxations, most 
of the luminescence occurs from the lowest vibrational state (n=0) when the 
temperature is sufficiently low. In that case the PL mirrors the ABS. 
 

 
 
 
 
 
 
 
 
 
Figure 2: Stick diagram of the 
absorption and luminescence 
spectra (at T=0 K). This shows the 
effect of an increasing Huang-
Rhys factor. For S=0 only the zero 
phonon line (ZPL) is visible. For 
increasing S the spectrum 
broadens rapidly. The Stokes shift 
is the difference in energy of the 
maximum of the ABS and PL 
spectra. 

 
 
Quantum Mechanics 
 
Now that we have established the optical spectra we can proceed to calculate the 
MCD, which is the difference of absorption of left and right polarized light in the 
presence of a magnetic field. To do this we first have to calculate the absorption 
without magnetic fields. In weak illumination conditions the absorption of the light 
per unit of length is linearly proportional to the intensity of the light and the transition 
probability. We will calculate the absorption by calculating the transition probabilities 
between all the vibrational levels in the electronic ground state G to an excited state X, 
i.e., we look at one particular absorption band. The electric dipole operator, ε (ε+ and 
ε− for σ+ and σ− circular polarized light respectively), causes a transition from Gg  to 
Xx  (in this scheme, capital characters denote the electronic states and lower case 
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characters denote vibrational states). The transition probability of such an electric 
dipole induced transition is 

P Xx GgGg Xx→ ±= ε 2 .     (5) 
This occurs at a photon energy E E E e eXx Gg x g− = + −0 ( ) , where ex and eg are the 
vibrational energies relative to the respective vibrational ground states and E0 is the 
zero phonon line energy. If we now sum up the contributions from all transitions to 
the absorption line A this becomes 

A E h n n n Xx Gg E E e ed Gg Xx x g± ±= − − − −( ) ( ) ( ( ))ν ε δ1 2
0 ,   (6) 

with hν the energy of the photon of absorption, nd the density of the defect, nGg and 
nXx the occupancy of the ground and excited state levels and δ the Kroniger delta 
function. We can now make some simplifications of this formula: 
1) In the Born-Oppenheimer approximation the wave functions can be decomposed 
into an electronic and a vibrational part 
 Gg G g=  
 Xx X x=  
Moreover, the Franck-Condon approximation tells us that the dipole operator does not 
work on the vibrational parts: 
 x X G g X G x gε ε± ±=  
Note that, although the vibrational states in the ground state (and in the excited state) 
are orthonormal, <g1|g2> = δ(g1,g2), they are not necessarily orthogonal to the excited 
states: <x|g> ≠ 0. 
2) In Equation 6 the absorptions are assumed to occur at sharp energies. The real 
absorption lines are broadened by various effects. Therefore, the δ-functions have to 
be replaced by general line shapes f(E). 
3) For low temperatures the excited state X is completely empty (nXx=0). For finite 
temperatures there still exists a distribution over the various vibrational levels in the 
ground state, nGg = dGng ≠ 0, with dG the degeneracy of the ground state. 
4) The electronic levels can be degenerate. As we will see later this is essential for 
MCD spectroscopy. It will be shown that some types of MCD activity are depending 
on the degeneracy of the ground or excited state. To label these degeneracies we can 
use χ and γ. 
Putting all this in Equation 6 yields 

A E h n X G
n
d

x g f E E e ed
g

G
x g± ±= − + −









( ) / ( ( ))ν χ ε γ

2 2
0 .   (7) 

To get the absorption spectrum now all we have to do is summing up all the possible 
transitions within the absorption band G→X: 

[ ]A E h
d

n X G n x g f E E e e
G

d g x g
x g

± ±= − + −∑ ∑( ) / ( ( ))
, ,

ν χ ε γ
χ γ

1 2 2
0 ,  (8) 

This can be decomposed into two parts, a transition part D0 and a line shape part F(E). 
Equation 8 can be written as 

A h D F E/ ( )ν = 0 ,      (9) 

with 
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D
d

n X G
G

d0
21= ∑ χ ε γ

χ γ,

,    (10) 

[ ]F E n x g f E E e eg x g
x g

( ) | | ( ( ))
,

= − + −∑
2

0 ,    (11) 

Here we have taken the absorption of unpolarized light, where ε=½(ε++ε−). For MCD 
the difference of left and right circular polarized light is measured, therefore, ε should 
be replaced with εMCD = ½(ε+−ε−). In its turn, ε+ and ε− can be expressed in 
polarization operators: ε+ = εx + iεy and ε− = εx − iεy. Therefore, εMCD = iεy, and we can 
immediately see from this that without a magnetic field there is no MCD signal: 
Because all wave functions Xχ  and Gγ  are real (because they are eigenvalues of 
the real Hamiltonian) and ε is a real operator the overlap of X GMCDχ ε γ  is always 
zero. In other words, there is no difference in absorption between left and right 
circular polarized light; no MCD. 
 
Magnetic Field 
 
Now we will introduce a magnetic field into the calculation. This will do three things: 
1. Lift degeneracies (γ and χ) of the ground and excited states. 
2. Changes the population of the levels via a new Boltzmann distribution. 
3. Mixes the levels G and X with other electronic levels. 
Each of these will have important consequences to the MCD spectrum. They will be 
discussed separately: 

 
 
 
 
Figure 3: Shift of the line as caused by a 
magnetic interaction. In first order the 
entire line shifts rigidly by ∆E. This shift 
is exaggerated in the figure; normally it 
is much less than the line width. 
 

1. The extra energy gained by the system is −µµµµ⋅B, where B is the magnetic field 
vector and µµµµ is the magnetic dipole: µµµµ = µB(L+gS), or in general µµµµ = µBgJJ, with J the 
total angular momentum and gJ the (Landé) g-factor and µB the Bohr magneton. In this 
case the energy is µBgJJzBz. This is purely an energy effect and it only changes the line 
positions in the line shape function f(E). This should be replaced by the new 
absorption function 

[ ] [ ]( )f E f E E f E E e e g J g J Bx g J
X

z
X

J
G

z
G

z' ( ) ( )= + = − + − + −∆ 0
χ χ γ γ ,   (12) 

or 

[ ] [ ]( )f E E e e X X G G Bx g z z− + − + −0 χ µ χ γ µ γ ,   (13) 

which defines an energy 
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[ ]∆E X X G G Bz z= −χ µ χ γ µ γ ,    (14) 

over which the absorption line is shifted rigidly, see Figure 3. This shift is normally 
much smaller than the absorption band. 

2. For the ground state G this also means a change in distribution over the vibrational 
sublevels. If the Zeeman energy is small compared to the thermal energy the 
Boltzmann distribution can be Taylor expanded. Neglecting terms in (B/kT)2 and 
higher the distribution over the levels becomes 

n n G X B
kTG g G g zγ γ γ µ χ' = +





0 01 ,     (15) 

3. Intermixing of levels can change the wave functions. In first order perturbation 
theory it does not change the energies. To apply perturbation theory we have to 
calculate the new wave functions: 

G G K
K G
E E

B
K

z

K G

γ γ λ
λ µ γ

λ

' = −
−∑ ,     (16) 

X X K
K X
E E

B
K

z

K X

χ χ λ
λ µ χ

λ

' = −
−∑ ,     (17) 

 
Then 

X G X G X G Bχ ε γ χ ε γ χ ε γ± ± ±= +0 ' ,    (18) 

These three effects can be substituted into Equation 8 on page 4: 

[ ] [ ]( )

A h
d

n G X F E

d
G X B

kT
X G X G B

n x g f E E e e X X G G B

G
G g

G
z

g
gx

x g z z

± ±

± ±

=

= +





⋅ +








⋅

⋅ − + − + −

∑

∑

∑

/ ( )' ' '

'

υ γ ε χ

γ µ χ χ ε γ χ ε γ

χ µ χ γ µ γ

γ
χγ

χγ

1

1 1

2

0 0 2

2
0

       (19) 

Because the energy corrections in F(E) are small compared to the line width, F(E) can 
be Taylor expanded around E–(E0+ex-eg). Doing this and collecting terms of zeroth 
and first order in B gives 

[ ]
A h A h B

d
X G E F E

E

d
X G X G F E

d
G G X G

kT
F E

G

G

G
z

± ± ±

± ±

±

= + ⋅




+

+ ⋅ +

+ ⋅ ⋅




∑

∑

∑

/ / ( )

Re ( )

( )

' *

ν ν χ ε γ ∂
∂

χ ε γ χ ε γ

γ µ γ χ ε γ

χγ

χγ

χγ

0 0 2

0

0 0 2

1

2

1 1

∆

   (20) 
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With the earlier remark that A0 is equal for σ+ and σ– light we can rewrite this while 
defining the three MCD terms,A1, B0  and C0 : 

( ) ( )∆A h A A h B/ /ν ν= − = ⋅+ − A B C1 0 0+ +    (21) 

( )A 1 = −

 


 ⋅ −







⋅

⋅ ⋅

+ −∑ X G X G X X G G

d
F E

E

z z

G

χ ε γ χ ε γ χ µ χ γ µ γ

∂
∂

χγ

0 2 0 2 0 0

1 ( )
 (22) 

[ ]

[ ]

B0 = −




⋅
−

+

+ − ⋅
−






⋅

− + + −
≠

− + + −
≠

∑∑

∑

Re X G K G X G K G
X K

E E

X G K X X G K X
K G

E E d

K X

z

K X

K G

z

K G G

χ ε γ λ ε γ χ ε γ λ ε γ
χ µ λ

χ ε γ λ ε χ χ ε γ λ ε χ
λ µ γ

λχγ

λ

0 0 0 0
0

0 0

0 0 0 0
0

0 0
2

 

C0 = −




⋅









− +∑
1 0 2 0 2

d
X G X G

G G
kTG

zχ ε γ χ ε γ
γ µ γ

χγ

   (23) 

 
Explanation of the MCD Terms 
 
Immediately some remarks can be made about the terms: 

1. The necessary degeneracy requirement of some levels for the A1, B0 and C0 
terms. For the C0 term the ground state G has to be degenerate. Here ‘degenerate’ 
means ‘to be magnetically degenerate’, so that the operator µz yields a nonzero result 
when averaged over the wave function, G Gzγ µ γ ≠ 0 . In the same way it can be 
shown that for theA1 term the ground state or the excited state needs to be degenerate, 
while for the B0 term the µz operator should mix a degenerate level into the ground or 
excited state (it can even be so that this third level is the ground or excited state itself). 

2. The temperature dependence: It is clear that only the C0 term depends on the 
temperature. This is a way to distinguish it from the other two terms. 

3. The B0 term is diamagnetic, but often also theA1 term is labelled diamagnetic 
since it has no paramagnetism in the ground state. Only the C0 term is purely 
paramagnetic. 
 
We can look into the three terms more carefully. In Figure 4 the three different 
sources for MCD are shown. 

A1   This term is caused by the fact that the σ+ and σ– absorption occur at different 
energies. Because this difference is small compared to the absorption band F(E) this 
can be approximated with  
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MCD ∝ ⋅ ∝ ⋅∆E F
E

B F
E

∂
∂

∂
∂

,      (24) 

For example a Gaussian line shape: 
 

( )( )F x x x( ) exp /= − −1
0

2 2

Γ
Γ

π
,     (25) 

( )( )F x x x x x' ( ) ( ) exp /= − − − −2 0
3 0

2 2

Γ
Γ

π
,     (26) 

where Γ is the width of the line. The extremes of this function occur at  

( )x x x± = − = ±0 2
Γ .       (27) 

At which point the intensity is 

F x' ( )± = ± ⋅2 1
2π Γ

       (28) 

The peak-peak intensity of an A1 -MCD signal is therefore proportional to the 
magnetic field and inversely proportional to the square of the line width Γ: 

MCD ∝ B / Γ 2        (29) 

It is also immediately clear that to have a difference in energy of σ+ and σ− absorption 
either the ground or the excited state has to be degenerate. 
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Figure 4: The three types of MCD activity, A1, B0 and C0 . The A1 term is caused by 
a shift in energy of the σ+ and σ− absorption and depends on the magnetic field and 
the line width. The B0 term is caused by a mixing of a level into the ground or excited 
state and depends on the distance in energy to this level and the magnetic field which 
the source of the mixing. The C0 term depends on temperature and magnetic field, as 
it is caused by a Boltzmann distribution over the magnetic sublevels. 
 
 

 
term description depends on required 

degeneracy
line shape 

A1 Zeeman  
energy 

splitting 

Γ, B G or X derivative 

B0 Mixing of 
electronic 

states 

∆E, B G, X, or K normal 

C0 Zeeman 
Boltzmann 
distribution 

T, B G normal 

 
Table 1: Description of the three MCD terms, what they depend on, the required 
degeneracy and line shape. 
 
 

C0 This term is depending on the temperature. This can easily be seen in Figure 4: 
although the transition probabilities for σ+ and σ– are the same, the number of 
available systems in the appropriate state (n+ and n−) is not equal. The MCD is 

MCD ∝ − ∝ −− − + + − +n n n nσ σ .     (30) 

The population of the levels follows a Boltzmann distribution, 

( )n
n

g BJ B
−

+

= −exp µ ,       (31) 

so that 

( )MCD ∝ −
+

=+ −

+ −

n n
n n

g B kTJ Btanh /µ 2 .    (32) 

Of course, to have a splitting in the ground level it had to be degenerate before the 
presence of a magnetic field. 
 

B0 This term is most difficult to visualize. The principle is that the magnetic field 
mixes the higher electronic states into the ground or excited state directly involved 
into the optical transitions. In this way a little of the degeneracies of these electronic 
states are introduced into G or X. It is obvious that in this case there are no 
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requirements about the degeneracies of the ground or excited state, although at least 
one of the levels that mix in should be degenerate. The B0 term can also arise from the 
mixing of the ground and excited states themselves. Again, then one of these should 
be degenerate, in which case there also exist B0 and C0 terms with, probably, higher 
magnitude. 
The mixing of the states is, in first order perturbation theory, linearly proportional to 
the magnetic field and inversely proportional to the energy separation, ∆E of the 
levels. In Table 1 a summary of the three MCD terms is given. 
 
As a final remark it has to be pointed out that all types of MCD can result in positive 
as well as negative line shapes, depending on the sign of the Zeeman splitting. In this 
way the sign of the g value can be determined. 
 
An Example 
 
In Figure 5 an example is drawn. We start with the situation of just two degenerate 
levels: the ground state is an s-electron doublet (A1) and the excited state is a p-
electron sextet. Part of the degeneracy of the p-electron is lifted by a spin-orbit 
coupling λL⋅S. This breaks down the validity of the quantum numbers S and L. 
Instead, J=L+S and J=L−S are good. The remaining 4-fold degeneracy is lifted by the 
magnetic field, so that all 8 levels are separated. The allowed optical transitions are 
given by ∆L = ±1 and ∆mJ = ±1 (+1 for σ+ and −1 for σ− polarized light). The first 
restrictions are caused by the fact that the electric dipole operator has odd parity and 
should therefore change the parity of the system (∆L is odd). The second restriction is 
caused by the fact that the z-component of the angular momentum should change, 
because the photon carries an angular momentum of +1 (σ+) or −1 (σ−). This is 
because of the special configuration of the magnetic field and the photon (B is parallel 
to k or P, the propagation vector of the photon). 
 

 
 
 
 
 
 
 
 
Figure 5: An example of 
MCD. In this case the ground 
state is an L=0, S=1/2 level 
and the excited state L=1, 
S=1/2. The excited state is 
split by spin-orbit coupling 
(λL·S) into a doublet (J=L–
S=1/2) and a quartet 
(J=L+S=3/2). The last 
degeneracies are removed by 
a Zeeman interaction gJµBB·J. 
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Optical excitations are indicated by lines, solid for σ+ and dashed for σ–. 
 
 
The allowed transitions are indicated in Figure 5. To calculate the relative transition 
probabilities, first we have to find the eigenfunctions after S.O. coupling, since they 
are no longer simple. 

( )λ λL S⋅ = + +L S L S L Sx x y y z z .     (33) 

This can be expressed in creation and annihilation operators. 

( ) ( )

( ) ( )

L L L S S S

L
i

L L S
i

S S

x x

y y

= + = +

= − = −

+ − + −

+ − + −

1
2

1
2

1
2

1
2

, ,

, .
    (34) 

Therefore 

( )λ λL S⋅ = + +





− − +

1
2

L S L S L Sz z+ .     (35) 

The Hamiltonian can then be calculated if we use  

L l L L l l l

L l L L l l l
L l l l

S s S S s s s

S s S S s s s
S s s s

z

z

+

−

+

−

= + − + +

= + − − −

=

= + − + +

= + − − −

=

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1

1 1 1

1 1 1

1 1 1

      (36) 

 
 |+1>|+½> |+1>|–½> |0>|+½> |0>|–½> |–1>|+½> |–1>|–½> 

|+1>|+½> λ      
|+1>|–½>  λ λ/√2    
|0>|+½>  λ/√2 λ    
|0>|–½>    λ λ/√2  

|–1>|+½>    λ/√2 λ  
|–1>|–½>      λ 

 
From this table it can be seen that |+1>|+½> and |–1>|–½> are still eigenfunctions. The 
other wave functions can be calculated by solving the above Hamiltonian. In the 
ground state (G) there is no spin-orbit coupling, since there is no orbital momentum 
(L=0). Therefore, the eigenfunctions remain unaltered. To summarize, the wave 
functions in the ground and excited state are as in Table 2. 
 
Now the transition probabilities, or oscillator strengths, can be calculated with the 
restrictions (selection rules) for optical transitions as described before. The restriction 
∆L = ±1 means that optical excitations are only from the ground state to the excited 
state and vice verse, while the restriction ∆mJ = ±1 means that for instance the mJ=–
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1/2 level is linked to the mJ= – 3/2 level by σ– light and to the mJ=+1/2 by σ+ light. 
(NB: it is assumed that we have stimulated absorption transitions and not stimulated 
emission. In the latter case the same levels would be linked by σ+ light and σ– light 
respectively, i.e., reversed). As an example we can calculate the transition probability 
between the mJ=–1/2 ground state to the mJ=+1/2 excited state. 

{ }P = + + + =+2 3 0 1 2 1 3 1 1 3
2

/ / / /–1/2 –1/2ε .   (37) 

The transition probabilities are summarized in Table 3 (for simplicity they have all 
been multiplied by a factor 3). 
 
Table 2: Wave functions after spin orbit coupling. The ground state G is unaltered. In 
the excited state (X, L=1) the sextet is split into a doublet with effective spin J=L–
S=1/2 and a quartet with effective spin J=L+S=3/2. 

 J mJ wavefunction 
X 3/2 3/2 |+1>|+½> 
(L=1) 3/2 1/2 √2/3⋅|0>|+½>+√1/3⋅|+1>|–½> 
J=3/2 3/2 –1/2 √1/3⋅|–1>|+½>+√2/3⋅|0>|–½> 
 3/2 –3/2 |–1>|–½> 
X (L=1) 1/2 1/2 √1/3⋅|0>|+½>–√2/3⋅|+1>|–½> 
J=1/2 1/2 –1/2 √2/3⋅|–1>|+½>–√1/3⋅|0>|–½> 
G (L=0) 1/2 1/2 |+½> 
J=1/2 1/2 –1/2 |–½> 

 
Table 3: Oscillator strengths (transition probabilities) of a L=0, S=1/2 system to a 
spin-orbit coupled L=1, S=1/2 system. The bold numbers are for σ+, while the 
numbers for σ– are printed in italics. For comparison also the legal EPR transitions 
are listed. 
 

 G X mJ 
G  epr  2 3  1  1/2 
 epr  2   1  3 –1/2 
  2  epr     1/2 
 2  epr      –1/2 
X 3     epr   3/2 
  1   epr  epr  1/2 
 1     epr  epr –1/2 
  3     epr  –3/2 
mJ 1/2 –1/2 1/2 –1/2 3/2 1/2 –1/2 –3/2  
 (J=1/2) (J=1/2) (J=3/2)  

 
With this table in hand we can reconstruct the MCD spectrum. Figure 5 has actually 
two absorption bands, one from the ground state to J=1/2 (A) and one to J=3/2 (B). In 
this way we can expect two C0 terms with opposite sign as clarified in Table 4. Figure 
6 shows such an MCD spectrum. Both these parts of the spectrum depend on 
temperature via (n––n+) one is located at position EA and one at EB. The superposition 
looks exactly like anA1 term, but it is not as can be tested by changing the 
temperature. 
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The A1 term can be found in this case too, if we look more carefully at the transitions. 
If we look only at the transition to the excited J=1/2 state (band A in Figure 6) and we 
take n– = n+ = n/2, then the A1 term (and the C0 term) vanishes and there seems to be 
no MCD activity. Closer examination reveals that the σ+ and σ− absorption occur at a 
slightly different energy. For a positive gJ the σ− absorption is at a slightly lower 
energy: Eσ+ – Eσ− = 2gµBB. This causes the A1 term of MCD. 

 
 
 

 σ+ σ− ABS 
 σ++σ− 

MCD  
σ+−σ− 

A 2n– 2n+ 2n 2(n––n+) 
B n–+3n+ 3n–+n+ 4n –2(n––n+) 
 
 
Figure 6 and Table 4: Absorption and 
MCD spectrum (not to scale) of the system 
of Figure 5. This system has two absorption 
peaks (at A and B). The combination of the 
resulting two C0 peaks of opposite sign 
looks like a derivative peak, but should not 
be confused with a single A1 peak. 

 
 
 
There will also be a B0 term, since the ground state as well as the excited state are 
degenerate and can (and will) mix with each other. The large distance between the 
levels makes the B0 term very small, though. 
 

 
 
 
 
 
 
 
 
Figure 7: An example MCD caused by an A1 
term. This system has two absorption peaks 
(at A and B). This results in a complicated 
spectrum of a combination of two A1 peaks. 

 
 
Experimental Set-up 
 
Figure 8 shows a typical experimental set-up. It consists of the following items: 
• A light source. 
• A monochromator for scanning the wavelength. 
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• A light chopper. This is only used when measuring the absorption spectrum. For 
the MCD spectrum this item is removed. 

• A circulator. This is the crux of the system. It consists of a linear polarizer and a 
quarter-wave plate. The quarter wave plate is normally a crystal of Piezo active 
material, whose fast and slow directions depend on the direction in which the 
crystal is deformed. Because of its Piezo-electric character the crystal can be 
deformed by electric field. Applying alternating voltage on the crystal continually 
changes stretching and shrinking of the crystal in the direction of the electric field.   
The effect on the outgoing beam is an alternating of the circular polarization 
direction. 

• The sample under study. For some applications (for instance to test the 
temperature dependence) this can be cooled using a normal cryostat. 

• The detector. The frequency range of interest determines the type of the detector. 
• A lock-in amplifier. This steers the circulator or light chopper with a reference 

signal (typically in the order of 40 kHz for the circulator). 
• A recorder. In modern equipment this means a computer. 
 

 
 
Figure 8: Typical MCD (of absorption) set-up. It invariably consists of a light source, 
a circular modulator, a detector and a lock-in amplifier connected to a recorder. For 
absorption spectra a chopper is used in place of the modulator. In some 
spectrometers the sample can be cooled or placed in a microwave cavity. The latter 
for optical detection of magnetic resonance (ODMR). 
 
Measuring the MCD spectrum consists of first taking the difference signal (σ+–σ–) in 
the presence of a magnetic field (as high as possible, though typically in the order of 2 
T) and then dividing it by the absorption signal without magnetic fields.   
The MCD signal can also be used to detect magnetic resonance in ODMR. In this 
case the magnetic field is scanned while also a microwave field is applied to the 
crystal. Outside resonance the MCD signal is described as before. When the system is 
in resonance the population difference (n+–n–) is annihilated and the MCD signal 
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disappears. Resonance therefore decreases the MCD intensity. See for example the 
ODMR study of the AsGa defect in GaAs by Meyer et al. 
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