Analysis of the Meyer-Neldel rule in organic thin-film field-effect transistors

<u>Peter Stallinga</u>, Henrique L. Gomes

Universidade do Algarve, CEOT FCT, Campus de Gambelas, Faro Portugal

The Meyer Neldel rule (MNR) [1] is an observation occurring in a variety of research fields ranging from diffusion processes (where it is called the compensation effect) to electrical conductivity. In general, the MNR is the observation of a thermal activation energy depending on a parameter and the existence of a temperature (the isokinetic temperature, $T_{\rm MN}$) where the dependence disappears. In other words, the non-parallel Arrhenius plots of the process all pass

through a single point. The MNR is often observed in organic materials, see for example the works of the Eindhoven group [2].

For thin-film transistors (TFTs), the activation energy of the drain-source current depends on the gate bias [3]. However, for a certain temperature this bias-dependence disappears and the current becomes bias independent. The figure gives an example of such a situation.

For amorphous-silicon TFTs, Shur and Hack have developed a model to explain the gate-bias dependence of the charge carrier mobility. We extend the theory and show how also the observation of the Meyer-Neldel rule can be explained by this model. The model is based on the existence of deep traps with a distribution exponentially decaying over energy, $N_{\rm T} = N_{\rm T0}$ $\exp(-E/kT_2)$. One parameter in this is the distribution energy kT_2 , which represents the slope in a logarithmic plot. We show that there is a direct link between the isokinetic temperature $T_{\rm MN}$ and T_2 . As such, Arrhenius plots directly reveal information about the trap distribution and

Example (simulation) of the MNR in the drain-source current of TFTs. Each curve represents an Arrhenius plot of the current for a certain gate bias as indicated. The solid dot is the Meyer-Neldel point. The inset shows the asmeasured activation energy as a function of bias. The dashed lines are guides for the eye.

are important in the evaluation of the quality of the material and device. Moreover, a model is developed to determine the minimum requirements for the observation of the MNR.

For sexithiophene (α T6) TFTs we demonstrated the link between traps on one side and nonlinear transfer curves, bias-dependent mobility, non-linear IV curves, stressing (increase of the threshold voltage over time) and (non-exponential) current transients on the other side [4, 5].

[1] W. Meyer and H. Neldel, Z. Tech. 18, 588 (1937).

[2] E.J. Meijer et al., Appl. Phys. Lett. 76, 3433 (2000).

[3] M. Shur and M. Hack, J. Appl. Phys. 55, 3831 (1984) and Shur in Physics of Semiconductor Devices (Prentice Hall, New Jersey, 1990).

[4] P. Stallinga *et al. J. Appl. Phys.* **96**, 5277 (2004).

[5] H.L. Gomes, *Appl. Phys. Lett.* 84, 3184 (2004).

Peter Stallinga: pjotr@ualg.pt