Electrical characterisation of transistors

Centre of Electronics Optoelectronics and Telecommunications, Faro, Portugal

Development of Novel Conjugated MOlecular NAnostructures by LIthography and their Transport Scaling Aspects (MONA-LISA).

Wuppertal, January, 2003

Summary

• Data analysis (procedure for the extraction o TFT parameters).

•Transport mechanism in thin films of T6.

•New insights into the problem of meta-stability.

•Nano-FETs.

• Conclusions.

Procedure for the extraction of TFT parameters

LIN:
$$I_{ds} = (W/L) C_{ox} \mu (V_g - V_t)^{1+\gamma} V_{ds}$$

SAT:
$$I_{ds} = (1/2)(W/L) C_{ox} \mu (V_g - V_t)^{2+\gamma}$$

This implies that the amount of free charge in the channel grows faster-than-linear with the gate voltage, i.e. no longer a simple "parallel metal plates" device

Alternatively: define an as-measured (parametric) mobility that depends on V_g , example (LIN)

$$I_{ds} = (W/L) C_{ox} \mu(V_g) (V_g - V_t) V_{ds}$$

Extraction procedure

Extraction procedure

$$H(V_{GS}) = \frac{\int_{0}^{V_{GS}} I_{DS}(x) dx}{I_{DS}(V_{GS})}$$
(1)

$$H(V_{GS}) = \frac{1}{2+\gamma} \left(V_{GS} - V_T \right)$$
 (2)

V_T is determined from the intercept, and γ from the slope

(3)

 $I_{DS}^{} 1/(1+\gamma)$

(4)
$$I_{DSlin} = \frac{K}{V_{AA}^{\gamma}} (V_{GS} - V_T)^{1+\gamma} V_{DS}$$
$$V_{AA} = \left[\frac{KV_{DS}}{S_1^{1+\gamma}}\right]^{1/\gamma}$$
$$\mu_{FET} = \mu_0 \left(\frac{V_{GS} - V_T}{V_{AA}}\right)$$

Exemple

$$I_{DSlin} = K\mu (V_{GS} - V_T) V_{DS}$$

$$I_{DSlin} = \frac{K}{V_{AA}^{\gamma}} (V_{GS} - V_T)^{1+\gamma} V_{DS}$$

Variable Range Hopping

VRH involves decaying density of trap states, for example $g(\varepsilon) = (N_T/kT_0) \exp(\varepsilon/kT_0)$ **g(**ε) Which results in, when the as-measured mobility in the linear region is defined as

 $\mu_{\rm FE} (\rm def) = (L/C_{\rm ox} WV_{\rm ds}) dI_{\rm ds}/dV_{\rm g}$

this mobility is

$$\mu_{\rm FE} = \mu_0(T) \ V_{\rm g}^{2(T0/T-1)}$$

therefore

 $\gamma = 2(T_0/T-1)$

Obtaining γ as a function of *T*

¹⁰Log-¹⁰Log plot. Slope yields γ . Corrected for V_T .

Comparison to VRH/MTR model

Threshold voltage shift

Simultaneously observed a threshold voltage shift

Meyer-Neldel rule

The Meyer-Neldel rule is an empirical rule, stating that the as-measured mobility, when plotted in an Arrhenius plot, for each gate voltages lies on a line and this line always points to the same "magical" point, $(T_{\rm MN}, \mu_{\rm MR})$.

Meyer-Neldel for T6

MNR holds, with a phase transition at 200 K

Nano FET, MTR/VRH analysis

Nano FET Meyer-Neldel Rule

Dramatic phase transition at 200 K.

Conclusions

• Failure of the VRH/MTR theory, which cannot adequately describe the behavior of γ as a function of temperature.

• Meyer-Neldel rule is still valid for these samples.

• Phase transition of the device at 200 K in the nano-FET and phase transition trajectory 200-250 K for micro-FET.

Meta-stability, a review

Transistors based on polycrystalline organic materials are meta-stable in a threshold-voltage shift upon prolonged gate voltage stress.

The instability:

b does not depend on the insulator.

>depends on environmental variables, and surface dielectric treatments.

Does not affect the FET mobility.

Threshold-voltage shift upon prolonged gate voltage stress.

The subtreshold slope changes with stress

There are three different meta-stable states.

What it is the kinetics of the relaxing and stressing processes ?

Thermalization-energy concept

This distribution of energy barriers D(E) can account for the observed no exponential kinetic behaviour

After a time *t* at a temperature *T*, all possible defect creation sites with $E \leq kTln(vt)$ will have converted into defects

A thermalization energy can therefore be defined by $E_{th} = kT ln (vt)$ where v is the attempt to escape frequency.

Stretched hyperbola function

This equation describes dispersive defect creation thermally activated with an exponential distribution of barrier heights, and a superlinear (α) dependence on the band-tail carrier density.

- E_A is the mean activation energy for defect creation.
- $k_B To$ is the slope of the barrier height distribution.

Evolution of the linear transfer curves with increasing stress time

Curves plotted as $I_{DS}^{1/(1+\gamma)}$ vs. V_{GS} . With $\gamma=0.81$. Vg=-10V.

Relative threshold-voltage shift versus thermalization energy E_{th}

Thermalization energy (eV)

$E_A(\mathrm{eV})$	$K_B T_{\theta}$ (meV)	α	ν ₀ (Hz)
0.807	35	1.5	10 ⁹

Table I. Fitting parameters are α and $k_B To$. v_0 and α can be determined independently.

Defect removal

Time (s)

Decrease of the threshold voltage with time, (o) without any bias applied to the device, (*) with +10V applied in the gate.

ln (Time) (s)

Decrease of the threshold voltage with time, without bias applied to the device.

I_{DS} transients upon gate voltages changes follows a streched exponential beaviour

 $\left(\frac{t}{\tau}\right)$

$$I_{DS} = I_0 \exp\left[-\left(\frac{t}{\tau}\right)^{\beta}\right]$$

T (K)	τ (s)	β
340	3.48	0.30
320	1.97	0.31

Time dependence of the subthreshold slope.

Evolution of the subthreshold swing with the stress time for a negative gate stressing voltage of 10V.

The effect of stressing in the subthreshold slope.

Stressing at constant voltage

Stressing at different gate voltages

Temperature dependence

Temperature dependence

Temperature dependence (200 nm device)

Characteristics of a 40 nm transistor

$$\mu = 0.087 \text{ Vcm}^{-2} \text{ V}^{-1}\text{s}^{-1}$$

Characteristics of a 200 nm transistor

 $\mu = 0.1 \text{ Vcm}^{-2} \text{ V}^{-1} \text{ s}^{-1}$

Conclusions

•The γ parameter should be used to compare the performance of different devices.

•Major changes (charge transport and/or stress kinetics) at the temperatures of 200 K, 240-250 K and 310 K.

•The device metastability can be described by a stretched hiperbola or stretched exponential behaviour. Using this mathematical formalism, we can get a parameter (E_A) to characterize device stability

