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Summary

• Data analysis (procedure for the extraction o 
TFT parameters).

•Transport mechanism in thin films of T6.

•New insights into the problem of meta-stability. 

•Nano-FETs.

• Conclusions.



LIN: Ids = (W/L) Cox µ (Vg−Vt)1+γ Vds

SAT: Ids = (1/2)(W/L) Cox µ (Vg−Vt)2+γ

Procedure for the extraction of TFT parameters

This implies that the amount of free charge in the channel 
grows faster-than-linear with the gate voltage, i.e. no longer a 
simple “parallel metal plates” device

Alternatively: define an as-measured (parametric) mobility 
that depends on Vg, example (LIN)

Ids = (W/L) Cox µ(Vg) (Vg−Vt) Vds



IDS 
1/(1+ γ)

VGS

Extraction procedure
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VRH involves decaying density of trap states, for example

g(ε) = (NT/kT0) exp (ε/kT0)

Which results in, when the as-measured

mobility in the linear region is defined as

µFE (def)= (L/CoxWVds) dIds/dVg

this mobility is

µFE = µ0(T) Vg
2(T0/T−1)

therefore

γ = 2(T0/T−1)

Variable Range Hopping



Obtaining γ as a function of T

10Log-10Log plot.

Slope yields γ.

Corrected for VT.
120 K

350 K



Comparison to VRH/MTR model

transition

Model good for 
T<200 K (T0 = 350 
K)

Model good for 
T>240 K (T0 = 400 
K)

(phase) transition?



Threshold voltage shift

Simultaneously observed a threshold voltage shift



Meyer-Neldel rule

The Meyer-Neldel rule is an empirical rule, stating that the 
as-measured mobility, when plotted in an Arrhenius plot, 
for each gate voltages lies on a line and this line always 
points to the same “magical” point, (TMN, µMR).

1/T

Log(µ)

(TMN, µMR) VG1

VG2



Meyer-Neldel for T6

MNR holds, with a 
phase transition at 
200 K



Nano FET, MTR/VRH analysis

Irregular MTR/VRH 
analysis.

Sample changes 
during heating?



Nano FET Meyer-Neldel Rule

Dramatic phase 
transition at 200 K.



Conclusions

• Failure of the VRH/MTR theory, which cannot adequately 
describe the behavior of γ as a function of temperature.

• Meyer-Neldel rule is still valid for these samples.

• Phase transition of  the device at 200 K in the nano-FET and 
phase transition trajectory  200-250 K for micro-FET. 



Meta-stability, a  review
Transistors based on polycrystalline organic materials are 
meta-stable in a threshold-voltage shift upon prolonged gate 
voltage stress.

The instability:
does not depend on the insulator.

depends on environmental variables, and surface 
dielectric treatments.

Does not affect the FET mobility.
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The FET mobility 
remains constant.

Threshold-voltage shift upon prolonged gate 
voltage stress.
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The subtreshold slope changes with stress
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There are three different meta-stable states.

Annealed



Annealed

Normal

Stressed

Gently heat 

+

VG positive 

Prolonged 

VG negative

What it is the kinetics of the relaxing and stressing processes ?

(1)

(2)

Time dependence

Voltage dependence

Temperature dependence

We have to study:



Thermalization-energy concept 

This distribution of energy 
barriers D(E) can account for 
the observed no exponential 
kinetic behaviour

After a time t at a temperature T, all possible defect creation 
sites with E≤kTln(νt) will have converted into defects 

A thermalization energy can therefore be defined by 
Eth=kTln (νt) where ν is the attempt to escape frequency. 
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This equation describes dispersive defect creation thermally activated 
with an exponential distribution of barrier heights, and a superlinear
(α) dependence on the band-tail carrier density.

EA is the mean activation energy for defect creation.

kBTo is the slope of the barrier height distribution.
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Curves plotted as IDS
1/(1+γ) vs. VGS.  With γ=0.81. Vg=-10V . 

Evolution of the linear transfer curves with increasing stress time
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Table I. Fitting parameters are α and kBTo.  ν0 and α can be determined independently.
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0.807 35 1.5 109

∆
V

t h
/(V

G
-V

t h
t =

0 )



0 1000 2000 3000 4000 5000 6000
4

4.5

5

5.5

6

6.5

7

7.5

8

Time (s)

(o) Without  bias.
(*) With bias enhanced removal.

Defect removal

Decrease of the threshold voltage with time, (o) without any bias applied 
to the device, (*) with +10V applied in the gate. 
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Time dependence of the subthreshold slope.
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Evolution of the subthreshold swing with the stress time 
for a negative gate stressing voltage of 10V.
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The effect of stressing in the subthreshold slope.



Temperature dependence
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Characteristics of a 40 nm transistor

µ=0.087 Vcm-2 V -1s-1 

VDS=-5V



Characteristics of a 200 nm transistor
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Conclusions

•The γ parameter should be used to compare the performance of 
different devices.

•Major changes (charge transport and/or stress kinetics) at the 
temperatures of 200 K, 240-250 K and 310 K.

•The device metastability can be described by a stretched 
hiperbola or stretched exponential behaviour. Using this 
mathematical formalism, we can get a parameter (EA) to 
characterize device stability.




