WHINERSIDADE DO ALGABUI

P. Stallinga (Universidade do Algarve) MONA-LISA Wuerzburg, 3-VII-2003

ECTRONICS

NO SIGNAL

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

MONA-LISA Würzburg 2003, P. Stallinga, UAlg MONA-LISA Würzburg 2003, P. Stallinga, UAlg

Transfer curves Spectroscopy

Poole-Frenkel

TSC

Conclusions

Introduction

- An FET needs VT to start working: $V_T = \dots N_A^{\frac{1}{2}}$
- From then on it is a capacitor:

 $Q = C_{ox}(V_G - V_T)$

• In the linear region the current is proportional to the field and the charge density:

 $I_{ds} = V_{ds} Q \mu$

Result:

$$I_{ds} = a V_{ds} C_{ox} (V_G - V_T) \mu$$

Transfer curves Spectroscopy

Poole-Frenkel

TSC

Conclusions

Introduction

$$I_{ds} = a C_{ox} (V_G - V_T) \mu V_{ds}$$

 $C_{ox}(V_G - V_T)$ charge density

response of a carrier μ to the field

device dimensions

 V_{ds}

a

field

Transfer curves Spectroscopy Poole-Frenkel TSC Conclusions

Introduction

Special Effects

- Mobility depends on longitudinal field (V_{ds})
- Mobility appears to depend on transversal field (V_g)
- Mobility appears to depend on the frequency (v)
- Threshold voltage not constant (V_g , t, T)

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Mobility appears to depend on Vg

LIN:
$$I_{ds} = (W/L) C_{ox} \mu (V_g - V_t)^{1+\gamma} V_{ds}$$

SAT:
$$I_{ds} = (1/2)(W/L) C_{ox} \mu (V_g - V_t)^{2+\gamma}$$

This implies that the **amount of free charge** in the channel grows faster-than-linear with the gate voltage, i.e. no longer a simple "parallel metal plates" device

Alternatively: define an as-measured (parametric) mobility that depends on V_{g} , example (LIN)

$$I_{\rm ds} = (W/L) C_{\rm ox} \mu(V_g) (V_g - V_t) V_{\rm ds}$$

Vissenberg et al, PRB 57, 12964 (1998)

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Mobility appears to depend on Vg

γ depends on T

1.0

0.5 0.0

-0.5

150

VRH (To=350K)

200

250

Temperature (K)

300

theory, which cannot adequately describe the behavior of γ as a function of temperature.

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

The Meyer-Neldel rule (MNR)

MNR: In Arrhenius plot all mobilities lie on line going through the same point (T_{MR} , μ_{MN})

MNR holds, with a phase transition at 200 K

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Current

spectroscopy

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Fourrier transform of pulse:

Shorter pulse: higher frequencies

Pulsed measurements

Examples: Pulse 20 μ s = 0.25 MHz Pulse 10 μ s = 0.5 MHz

When doing pulsed measurement, you are doing FTCS (Fourrier-transform current-spectroscopy)

Important if μ depends on ν .

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Amplitude of response proportional to μ

Current Spectroscopy

Using lock-in detection

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Experimetal Setup

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Experimetal Setup

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Current Spectroscopy

The as-measured mobility depends on the frequency!

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Spectroscopy results

Stressing effects (V_T changes)

Extrapolation to pulsed measurements

Pulsed experiments give 500x mobility

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Spectroscopy results

Expected for $t = \infty$: DC mobility = 0 because $V_T = V_G$. AC mobility is not 0 (?)

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Poole-Frenkel Conduction model

For low-conductivity materials, the conducting model might be "field-assisted hopping".

q ϕ_{R}

Au

Si3 N4

Si

$$J \sim \mathscr{E} \exp\left[\frac{-q(\phi_B - \sqrt{q\mathscr{E}/\pi\epsilon_i})}{kT}\right] \qquad \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT)$$

The as-measured mobility then depends on the longitudinal field (Vds)

Images and equations: Sze, "Physics of Semiconductor Devices", 2nd ed., p403.

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Poole-Frenkel conduction in literature

Waragai, "Charge transport in thin films of semiconducting oligothiophenes", PRB 52, 1786 (1995).

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Experimental observation of Poole-Frenkel conduction

Sample: LO27 (Tobias), RT, LV

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Poole-Frenkel: Effect of temperature

Frenkel-Poole
emission
$$J \sim \mathscr{C} \exp\left[\frac{-q(\phi_B - \sqrt{q\mathscr{C}/\pi\epsilon_i})}{kT}\right] \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT)$$

Sample: LO23 (Tobias)

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Simulation of Poole-Frenkel conduction

1: Simple model: field (and μ) constant in space

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Simulation of Poole-Frenkel conduction

2: Full simulation. System of differential equations

Differential equations:

- $1. \quad E(x) = \mathrm{d}V(x)/\mathrm{d}x$
- 2. $\mu(x) = \mu_0 \exp[\gamma E(x)^{\frac{1}{2}}]$
- 3. $Q(x) = C_{ox} \left[Vg Vt V(x) \right]$
- 4. $I(x) = W Q(x) \mu(x) E(x)$

Boundary conditions:

- *I* constant in space, $I(x) = I_{ds}$
- V(0) = 0

•
$$V(L) = V_{ds}$$
 (or $I = I_{ds}$)

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Simulation of Poole-Frenkel conduction

2: Full simulation. System of differential equations

Note: $\gamma \sim 1/T$

Intro					
muo	Alternatives Calestilles Damian Caratasta				
Transfer curves	F	Alternative: Schottky Barrier Contacts			
Spectroscopy		-			
Poole-Frenkel	Schottky emission				
TSC		$J = A^{T} \exp \left[\frac{kT}{kT} \right] \sim T \exp \left[\frac{kT}{kT} \right]$			
Conclusions		$I = A * T^2 \wedge T \left[-q(\phi_B - \sqrt{q\mathcal{E}/4\pi\epsilon_i}) \right] \qquad T^2 = \alpha \epsilon_1 + \alpha \sqrt{W/T}$	(U)		
	Frenkel-Poole	$J \sim \mathscr{E} \exp\left[\frac{-q(\phi_B - \sqrt{q\mathscr{E}/\pi\epsilon_i})}{kT}\right] \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT)$	7		

- Very similar to Poole-Frenkel emission
- Can be modeled by diodes in series with the FET

 But: maximum current through device would be reverse-bias saturation current of a Schottky diode.

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Schottky Barrier Contacts

$$J = A^*T^2 \exp\left[\frac{-q(\phi_B - \sqrt{q8/4\pi\epsilon_i})}{kT}\right] \sim T^2 \exp(+a\sqrt{V/T} - q\phi_B/kT)$$

Frenkel–Poole emission

CINISSION

Schottky

$$J \sim \mathscr{E} \exp\left[\frac{-q(\phi_B - \sqrt{q\mathscr{E}/\pi\epsilon_i})}{kT}\right] \qquad \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT)$$

- Very similar to Poole-Frenkel emission
- Can be electrically simulated by 4 diodes in series with the FET

• But: connection to a physical model is lost.

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Poole-Frenkel Conduction model

Conclusions:

- Region at contact is highly resistive or entire sample is controlled by hopping conduction (MTR: multi-trap and release?).
- correlation seen with other effects? (non-linear transfer curves)

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature Scanned Current

$$V_T = (4q\epsilon_s \psi_B N_A^{-})^{1/2} / C_{ox} + 2\psi_B$$

Dependence on temperature

	Classic ½-con	Organic ½-con	
N_A^-	No	Yes	
Ψ_B	Yes	Yes	p452 of Sze

OPTO-ELECTRONICS

http://www.ualg.pt/fct/adeec/optoel/fet/

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature Scanned Current

- V_T decreases reversibly because ψ_B changes (linear)
- Poole-Frenkel: $\mu = \exp(-E_A/kT)$

PF "wins", current is exponentially growing

Transfer curves

Spectroscopy

Poole-Frenkel

тсс

Conclusions

Temperature Scanned Current

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature Scanned Current

B:

$$V_T = (4q\epsilon_s \psi_B N_A^{-})^{1/2} / C_{ox} + 2\psi_B$$

• V_T increases irreversibly because N_A appear/ionize. Stressing!

• $\tau = \tau_0 \exp(-E_A/kT), \quad N_A^{-}(t) = N_A^{-}(\infty)[1 - \exp(t/\tau)]$

Stressing wins because of slow scanning.

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature Scanned Current

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature, Poole-Frenkel

Sample 35 *T* = 180 K

Frenkel-Poole
emission
$$J \sim \mathscr{C} \exp\left[\frac{-q(\phi_B - \sqrt{q\mathscr{C}/\pi\epsilon_i})}{kT}\right] \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT)$$

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature, Poole-Frenkel

Sample 35 *T* = 160 K

Frenkel-Poole
emission
$$J \sim \mathscr{E} \exp\left[\frac{-q(\phi_B - \sqrt{q\mathscr{E}/\pi\epsilon_i})}{kT}\right] \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT)$$

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature, Poole-Frenkel

Sample 35 *T* = 140 K

Frenkel-Poole
emission
$$J \sim \mathscr{C} \exp\left[\frac{-q(\phi_B - \sqrt{q\mathscr{C}/\pi\epsilon_i})}{kT}\right] \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT)$$

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Transfer curves Spectroscopy Poole-Frenkel TSC Conclusions

Conclusions

Magical temperature (phase transition?) at 200 K Behavior up to 250 K well understood VRH doesn't work MNR applies Poole-Frenkel can explain a lot Is it the same as MTR (multi-trap-and-release)? Gilles Horowitz

Mobility spectra. Careful with pulsed measurements, μ depends on ν

Transfer curves Spectroscopy Poole-Frenkel TSC Conclusions

Thanks

Current Spectroscopy: José Almada, Nelson Pimenta Final-year project students

Henrique Gomes

All the partners in the MONA-LISA project

The Callas (re)insurance group for giving this computer