NO SIGNAL
Introduction
Introduction

• An FET needs VT to start working:
 \[V_T = \ldots N_A^{\frac{1}{2}} \]

• From then on it is a capacitor:
 \[Q = C_{ox} (V_G - V_T) \]

• In the linear region the current is proportional to the field and the charge density:
 \[I_{ds} = V_{ds} Q \mu \]

Result:

\[I_{ds} = a V_{ds} C_{ox} (V_G - V_T) \mu \]
\[I_{ds} = a \ C_{ox} \ (V_G - V_T) \ \mu \ V_{ds} \]

- \(a \) device dimensions
- \(C_{ox} \ (V_G - V_T) \) charge density
- \(\mu \) response of a carrier to the field
- \(V_{ds} \) field
Introduction

Special Effects

- Mobility depends on longitudinal field \((V_{ds}) \)
- Mobility \textit{appears} to depend on transversal field \((V_g) \)
- Mobility \textit{appears} to depend on the frequency \((\nu) \)
- Threshold voltage not constant \((V_g, t, T) \)
Intro
Transfer curves
Spectroscopy
Poole-Frenkel
TSC
Conclusions
Mobility \textit{appears} to depend on V_g

\begin{align*}
\text{LIN:} \quad I_{ds} &= (W/L) \, C_{ox} \, \mu \, (V_g - V_t)^{1+\gamma} \, V_{ds} \\
\text{SAT:} \quad I_{ds} &= (1/2)(W/L) \, C_{ox} \, \mu \, (V_g - V_t)^{2+\gamma}
\end{align*}

This implies that the \textbf{amount of free charge} in the channel grows faster-than-linear with the gate voltage, i.e. no longer a simple “parallel metal plates” device.

Alternatively: define an as-measured (parametric) mobility that depends on V_g, example (LIN)

$$I_{ds} = (W/L) \, C_{ox} \, \mu(V_g) \, (V_g - V_t) \, V_{ds}$$
\[g(\varepsilon) = \left(\frac{N_T}{kT_0}\right) \exp\left(\frac{\varepsilon}{kT_0}\right) \]

\[\gamma = 2\left(\frac{T_0}{T} - 1\right) \]

Vissenberg et al, PRB 57, 12964 (1998)
Mobility appears to depend on V_g

γ depends on T

Failure of the VRH/MTR theory, which cannot adequately describe the behavior of γ as a function of temperature.
The Meyer-Neldel rule (MNR)

MNR: In Arrhenius plot all mobilities lie on line going through the same point \((T_{MR}, \mu_{MN})\)

MNR holds, with a phase transition at 200 K
Pulsed measurements

Fourrier transform of pulse:
Shorter pulse: higher frequencies

Examples:
Pulse 20 µs = 0.25 MHz
Pulse 10 µs = 0.5 MHz

When doing pulsed measurement, you are doing FTCS (Fourrier-transform current-spectroscopy)
Important if µ depends on ν.
Current Spectroscopy

Amplitude of response proportional to μ

Using lock-in detection
Intro
Transfer curves
Spectroscopy
Poole-Frenkel
TSC
Conclusions

Experimetal Setup

![Experimental Setup Diagram]
The as-measured mobility depends on the frequency!
Spectroscopy results

Stressing effects (V_T changes)
Spectroscopy results

Extrapolation to pulsed measurements

Pulsed experiments give 500x mobility

\[\Delta t = 10 \ \mu s \]

\[\mu = 10^{-2} \ \text{cm}^2/\text{Vs} \]
Expected for $t = \infty$: DC mobility = 0 because $V_T = V_G$. AC mobility is not 0 (?)
Transient of mobility vs. time.

\[\nu = 570 \text{ Hz} \]

Sample: T6-35

\[\mu(t) = \mu_0 \exp(-\sqrt{t/\tau}) + \mu_{\text{offset}} \]

Note that in this experiment Vg is always on
Poole-Frenkel Conduction model

For low-conductivity materials, the conducting model might be “field-assisted hopping”.

Frenkel–Poole emission

\[J \sim \gamma \exp \left[-\frac{q(\phi_B - \sqrt{q\phi_B/\pi e_i})}{kT} \right] \sim V \exp(+2a\sqrt{V/T} - q\phi_B/kT) \]

The as-measured mobility then depends on the longitudinal field (Vds)

Poole-Frenkel conduction in literature

Experimental observation of Poole-Frenkel conduction

Sample: LO27 (Tobias), RT, LV
Poole-Frenkel: Effect of temperature

\[T = 210 \text{ K} \quad \text{and} \quad T = 340 \text{ K} \]

Frenkel-Poole emission

\[J \sim \mathcal{E} \exp \left[-\frac{q(\phi_B - \sqrt{q\mathcal{E}/\pi\varepsilon})}{kT} \right] \sim V \exp \left(+2a \sqrt{V/T} - q\phi_B/kT \right) \]

Sample: LO23 (Tobias)
Simulation of Poole-Frenkel conduction

1: Simple model: field (and μ) constant in space

$$E = \frac{V_{ds}}{L}$$

$$\mu = \mu_0 \exp(\gamma E^{1/2})$$

$$I_{ds} = a C_{ox} (V_G - V_T) \mu V_{ds}$$
Simulation of Poole-Frenkel conduction

2: Full simulation. System of differential equations

Differential equations:
1. \(E(x) = \frac{dV(x)}{dx} \)
2. \(\mu(x) = \mu_0 \exp[\gamma E(x)^{1/2}] \)
3. \(Q(x) = C_{ox} \left[V_g - V_t - V(x) \right] \)
4. \(I(x) = W Q(x) \mu(x) E(x) \)

Boundary conditions:
- \(I \) constant in space, \(I(x) = I_{ds} \)
- \(V(0) = 0 \)
- \(V(L) = V_{ds} \) (or \(I = I_{ds} \))
Simulation of Poole-Frenkel conduction

2: Full simulation. System of differential equations

Note: $\gamma \sim 1/T$
Alternative: Schottky Barrier Contacts

\[I = V_s L_s \exp \left[\frac{K L}{-q(\phi_B - V_A/\sqrt{q/\varepsilon})} \right] \sim L_s \varepsilon \exp(+A \sqrt{V}/L - d\phi_B/K L) \]

Frenkel-Poole emission

\[J \sim \varepsilon \exp \left[-q(\phi_B - \sqrt{q/\varepsilon}/\pi\varepsilon) \right] \sim V \exp(+2a \sqrt{V}/T - q\phi_B/kT) \]

- Very similar to Poole-Frenkel emission
- Can be modeled by diodes in series with the FET

\[\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{diagram}}
\end{array} \]

- But: maximum current through device would be reverse-bias saturation current of a Schottky diode.
Schottky Barrier Contacts

- Very similar to Poole-Frenkel emission
- Can be electrically simulated by 4 diodes in series with the FET

\[I = \mathcal{V} \times \mathcal{I}_0 \exp \left(\frac{K_0}{d(\phi_R - \sqrt{q\mathcal{E}/\pi\epsilon_i})} \right) \sim \mathcal{I}_0 \exp \left(+a \sqrt{\mathcal{V}/T} - \phi_R/kT \right) \]

\[J \sim \mathcal{E} \exp \left(-\frac{q(\phi_B - \sqrt{q\mathcal{E}/\pi\epsilon_i})}{kT} \right) \sim \mathcal{V} \exp \left(+2a \sqrt{\mathcal{V}/T} - q\phi_B/kT \right) \]

- But: connection to a physical model is lost.
Conclusions:
• Region at contact is highly resistive or entire sample is controlled by hopping conduction (MTR: multi-trap and release?).
• correlation seen with other effects? (non-linear transfer curves)
Intro
Transfer curves
Spectroscopy
Poole-Frenkel
TSC
Conclusions
Temperature Scanned Current

\[V_T = \left(4q\varepsilon_s \psi_B N_A^{-} \right)^{1/2} / C_{ox} + 2\psi_B \]

Dependence on temperature

<table>
<thead>
<tr>
<th></th>
<th>Classic ½-con</th>
<th>Organic ½-con</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_A^{-})</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>(\psi_B)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

http://www.ualg.pt/fct/adeec/optoel/fet/

p452 of Sze
A:

- V_T decreases reversibly because ψ_B changes (linear)
- Poole-Frenkel: $\mu = \exp(-E_A/kT)$

PF “wins”, current is exponentially growing
Temperature Scanned Current

$T(C) = 5020-1030-50-70-90100110120130-140-150$

$E_A = 0.167 \text{ eV}$

PF:

$E_A = q \phi_B - 2a k \sqrt{V_{ds}}$

$J \sim \varepsilon \exp \left[-\frac{q(\phi_B - \sqrt{q\varepsilon/\pi \varepsilon})}{kT} \right] \sim V \exp(2a \sqrt{V/T} - q\phi_B/kT)$

Frenkel–Poole emission

Intro
Transfer curves
Spectroscopy
Poole-Frenkel
TSC
Conclusions
B: \[V_T = \left(4q\varepsilon_s\psi_B N_A^-\right)^{1/2} / C_{ox} + 2\psi_B \]

- \(V_T \) increases irreversibly because \(N_A \) appear/ionize. Stressing!

- \(\tau = \tau_0 \exp(-E_A/kT) \), \(N_A^-(t) = N_A^-(\infty)[1-\text{Exp}(t/\tau)] \)

Stressing wins because of slow scanning.
Temperature Scanned Current

\[V_{ds} = -0.5 \, \text{V}, \quad V_{g} = -9 \, \text{V} \]
Sample 35 $T = 180\ K$

Frenkel–Poole emission

\[J \sim \mathcal{E} \exp \left[-\frac{q(\phi_B - \sqrt{\mathcal{E}/\pi\varepsilon})}{kT} \right] \sim V \exp(2a \sqrt{V/T} - q\phi_B/kT) \]

\[R_P = 20\ G\Omega \]

\[V_g = -10\ V \]
Sample 35 \(T = 160 \, \text{K} \)

\[V_g = -20 \, \text{V} \]

Frenkel–Poole emission

\[J \sim \xi \exp \left[-\frac{q(\phi_B - \sqrt{\xi}/\pi\varepsilon_i)}{kT} \right] \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT) \]
Temperature, Poole-Frenkel

Sample 35 \(T = 140 \text{ K} \)

\[J \sim e \exp \left[-\frac{q\phi_B - \sqrt{q\varepsilon/\pi\varepsilon_i}}{kT} \right] \sim V \exp(+2a\sqrt{V}/T - q\phi_B/kT) \]

Frenkel–Poole emission

\(V_g = -20 \text{ V} \)
Conclusions
Magical temperature (phase transition?) at 200 K
Behavior up to 250 K well understood
VRH doesn’t work
MNR applies
Poole-Frenkel can explain a lot
Is it the same as MTR (multi-trap-and-release)?
Gilles Horowitz

Mobility spectra. Careful with pulsed measurements, μ depends on ν
Thanks

Current Spectroscopy:
José Almada, Nelson Pimenta
Final-year project students

Henrique Gomes

All the partners in the MONA-LISA project

The Callas (re)insurance group for giving this computer