Electronic transport in Organic Semiconductors Field Effect Transistors of sexithienyl

P. Stallinga, Universidade do Algarve (FCT, OptoEl, CEOT)

Overview

History of organic FETs in Faro

- "Last time on OptoEl": Temperature scanned current
- Stressing. Illumination experiments
- Poole-Frenkel results
- Non-linear transfer curves explained

Geography

Universidade do Algarve Faro, Portugal

Research visit Gdansk, December 2001

```
We don't have
```

```
MBE, clean rooms, AFM, STM, EM, etc.....
```

What do we have?

The most sophisticated system of electronic measurements:

DLTS (the only "organic" DLTS)

Organics-specific FET measurement system

Physics of FETs

"I don't know why you're wasting your time. There's no point in reinventing the wheel."

Organic materials are like any other semiconductor

No point in reinventing the wheel

1st MONA-LISA meeting

Faro, 29.06.2001

Revision

Organic FETs in Faro

Start with classic theory. However: Non-linear Transfer curves observed

Revision

Last meeting (Würzburg)

Failure of VRH model

Poole-Frenkel / MTR conduction correct

Meyer-Neldel rule

Stressing (change of $V_{\rm T}$ induced by $V_{\rm g}$)

Frequency response of the FETs: $\mu(v)$ increases with v

Poole-Frenkel conduction in literature

Waragai, "Charge transport in thin films of semiconducting oligothiophenes", PRB 52, 1786 (1995).

MONA-LISA Würzburg 2003, P. Stallinga, UAlg

Transfer curves

Spectroscopy

Poole-Frenkel

TSC

Conclusions

Temperature Scanned Current

A: Poole-Frenkel / MTR: $\mu = \exp(-E_A/kT)$

B: $V_{\rm T}$ increases reversibly because $N_{\rm T}$ **new** defects appear. (Reversible upon annealing at 340 K without bias)

MONA-LISA Würzburg 2003, P. Stallinga, UAlg

Illumination experiments

Response to white light

Spectrum

Fully stressed device (1 weekend Vg on); channel closed

After illumination to white light

Irreversible!

Poole-Frenkel

Poole-Frenkel

Experimental slope: 0.29 V^{-0.5}

Transfer curves

Non-linear transfer curves

Experimental γ ranging from 0 to 5, sometimes depending on *T*, sometimes abrupt changes, etc. etc.

Rejection of VRH theory

Explanation Shur

Section 4-12 of "Physics of Semiconductor Devices", M. Shur Amorphous silicon Thin Film Transistors

Classical trap in classical semiconductor

For certain $E_{\rm f}$: ratio $p_{\rm t}/(p+p_{\rm t})$ is small

Classical trap in classical semiconductor

For certain E_f : ratio $p_t/(p+p_t)$ is small ... and constant! $p/p_t = (N_V/N_t) \exp[(E_V - E_t)/kT]$

Classical trap in classical semiconductor

As a result:

$$\Delta Q = \Delta (p + p_{\rm t}) = C_{\rm ox} \, \Delta V_{\rm g}$$

becomes (only p contributes to current):

$$\Delta I_{\rm ds} = V_{\rm ds} \ \mu \ \Delta p$$
$$= V_{\rm ds} \ \mu \left(\Delta p / \Delta (p + p_{\rm t}) \right) \ C_{\rm ox} \ \Delta V_{\rm g}$$
$$= V_{\rm ds} \ \mu \ \alpha \ C_{\rm ox} \ \Delta V_{\rm g}$$

i.e. classical FET equation with tiny correction $\alpha\approx 1$ independent of $V_{\rm g}$

Because slopes in Ef plot are equal ⁴

Abundant trap in amorphous semiconductor

For certain $E_{\rm f'}$ ratio $p_{\rm t}/(p+p_{\rm t})$ is large

Abundant trap in amorphous semiconductor

For certain $E_{\rm f}$, ratio $p_{\rm t}/(p+p_{\rm t})$ is large ... and depends on $E_{\rm f}$ $p/p_{\rm t} = (N_{\rm V}/N_{\rm t}) \exp[(aE_{\rm V}-bE_{\rm t} + \{a-b\}E_{\rm f})/kT]$ and thus on $V_{\rm g}$

Abundant trap in amorphous semiconductor

As a result:

$$\Delta Q = \Delta (p + p_{\rm t}) = C_{\rm ox} \, \Delta V_{\rm g}$$

becomes (only p contributes to current):

$$\Delta I_{\rm ds} = V_{\rm ds} \ \mu \ \Delta p$$
$$= V_{\rm ds} \ \mu \ \Delta V_{\rm g}^{\rm a/b}$$

i.e. our observed T6 FET transfer curves!

Because slopes in Ef plot are different

p (and $I_{\rm ds}$) grow faster-than-linear with $V_{\rm g}$

Remarks

• Any γ can be explained by this idea.

• γ can change from device to device and even from day to day, depending on the density and energetic distribution of traps

• This γ can depend on *T*, but doesn't have to be

•Once a channel is formed, $E_{\rm f}$ doesn't move much anymore and γ is constant.

•When the gate bias is changed, newly induced carriers are necessarily of the conductive type. (otherwise they would never reach the interface from the drain/source.): Initilially $\Delta Q = \Delta p = C_{\rm ox} \Delta V_{\rm g}$

•From there they get trapped: measuring fast results in a large carrier mobility. Measuring slow results in a low and gatedependent mobility.

Remarks

All amorphous materials show this behavior

What type of traps?

Resonant trap

Conclusions about non-linear transfer curves

- •Abundant trap. Every molecule a trap!
- Distributed in energy
- $E_{\rm f}$ resonant with trap
- Conductive states above trap states
- Conductive states mostly empty (at steady state)
- •New charges always injected in conductive states

Conclusions

3 things important for organic FETs: Traps traps & traps Responsible for non-linear transfer curves $(I_{ds} \propto V_{g}^{\gamma})$ Responsible for non-linear IV curves ($I_{ds} \propto V_{ds} \exp(-\sqrt{V_{ds}})$) Responsible for temperature activation of current (0.17 eV)Responsible for stressing Reversible creation of new traps in dark (>200 K) Irreversible creation of new traps under illumination

