

Electrical Measurements on FETs of T6

P. Stallinga, H.L. Gomes

Madrid, December 2001

Standard FETs

Mobility changes as function of gate voltage

Previous results

Perfect straight line when plotted as 6th-root of current vs. Vg

 $I_{ds} \sim (V_g - V_t)^6$

FET in saturation region:
$$I_{DS} = \frac{mZ}{L} \mu_p C_i (V_G - V_T)^2$$

FET in linear region:
$$I_{DS} = \frac{Z}{L} \mu_p C_i (V_G - V_T) V_D$$

SAT:
$$I_{DS} \sim V_G^{a}$$
 \longrightarrow LIN: $I_{DS} \sim V_G^{a-1}$

New results. Linear region

Plotted as 5th-root. Consistent with Saturation-region data

 $I_{ds} \sim V_{ds} (V_g - V_t)^5$

Gate-voltage-dependent mobility up to 1x10⁻³ cm²/Vs

Variable Range Hopping

PHYSICAL REVIEW B

VOLUME 57, NUMBER 20

15 MAY 1998-II

Theory of the field-effect mobility in amorphous organic transistors

M. C. J. M. Vissenberg* Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands and Instituut–Lorentz, University of Leiden, 2300 RA Leiden, The Netherlands

M. Matters[†] Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands (Received 13 January 1998)

The field-effect mobility in an organic thin-film transistor is studied theoretically. From a percolation model of hopping between localized states and a transistor model an analytic expression for the field-effect mobility is obtained. The theory is applied to describe the experiments by Brown *et al.* [Synth. Met. **88**, 37 (1997)] on solution-processed amorphous organic transistors, made from a polymer (polythienylene vinylene) and from a small molecule (pentacene). Good agreement is obtained, with respect to both the gate voltage and the temperature dependence of the mobility. [S0163-1829(98)01320-4]

JOURNAL OF APPLIED PHYSICS

VOLUME 85, NUMBER 6

15 MARCH 1999

Gate voltage dependent mobility of oligothiophene field-effect transistors

Gilles Horowitz,^{a)} Riadh Hajlaoui, Denis Fichou, and Ahmed El Kassmi Laboratoire des Matériaux Moléculaires, CNRS, 2 rue Henry-Dunant, 94320 Thiais, France

(Received 5 May 1998; accepted for publication 8 December 1998)

Organic field-effect transistors, in which the active semiconductor is made of oligothiophenes of various lengths, have been fabricated and characterized. A method is developed to estimate the field-effect mobility μ corrected for the contact series resistance. The mobility is found to increase by a factor of nearly 100 from quaterthiophene (4T) to octithiophene (8T). More importantly, μ increases quasilinearly with gate voltage. The origin of this gate bias dependence is discussed. One explanation could be the presence of traps that limit charge transport. Alternatively, the gate-voltage dependence is tentatively attributed to a dependence of the mobility with the concentration of carriers in the accumulation layer. © 1999 American Institute of Physics. [S0021-8979(99)02506-2]

Vissenberg and Matters

$$\begin{split} \mu_{\rm FE} &= \frac{\sigma_0}{e} \Biggl(\frac{\pi (T_0/T)^3}{(2\alpha)^3 B_c \Gamma (1 - T/T_0) \Gamma (1 + T/T_0)} \Biggr)^{T_0/T} \\ &\times \Biggl[\frac{(C_i V_G)^2}{2k_B T_0 \epsilon_s} \Biggr]^{T_0/T - 1}, \end{split}$$

$$\mu = V_{G}^{2} (T_{0}/T-1)$$
SAT:

$$I_{ds} = V_{G}^{2} T_{0}/T$$

$$I_{ds} = V_{G}^{2} T_{0}/T-1$$

	$\sigma_0(10^{10}~{\rm S/m})$	α^{-1} (Å)	T_0 (K)
Pentacene	1.6	2.2	385
PTV	0.7	0.8	380

Gate-dependent mobility, Just as we need!

caution

In saturation. Sample F10

Sample F10

Sample 8 nm 150 °C

Each line represents a transfer curve at a different temperature

Slopes 'a' depend on temperature!

VRH works?

Sample 8 nm 150 °C

Each dot represents the slope in a transfer curve at a different temperature

Slopes 'a' not well predicted by VRH

Gate-voltage-dependent mobility up to 2.5x10⁻³ cm²/Vs

Threshold voltage

Impurity levels freeze out in F10 and not in '150 °C'

Measurement conditions: speed

Measured mobility depends dramatically on scanning speed!

Measurement conditions: pulsed

For pulsed measurements we get even higher currents

Large hysteresis. Better studied with transient spectroscopy

- Gate-voltage-dependent mobility
- Mobilities up to $2.5 \ 10^{-3} \ cm^2/Vs$
- Analysed with Variable Range Hopping model
- VRH analysis result:
 - sample F10: wrong. Tunneling conduction?
 - sample 150 °C: not conclusive. More data needed
- Threshold voltage depends on temperature (deep level freezeout?)
- \bullet Correlations: morphology, mobility, 'a', $V_{\rm T}$
- Measurement conditions studied

for your attention