### **MONA-LISA**



# Electrical Measurements on FETs of T6



Faro, 29.06.2001 H.L. Gomes, P. Stallinga



### Physics of FETs



"I don't know why you're wasting your time. There's no point in reinventing the wheel."

# Organic materials are like any other semiconductor

### No point in reinventing the wheel



### **Physics of FETs**



FET in linear region: 
$$I_{DS} = \frac{Z}{L} \mu_p C_i (V_G - V_T) V_D$$

FET in saturation region:  $I_{DS} = \frac{mZ}{L} \mu_p C_i (V_G - V_T)^2$ 



# Standard FET curves; theory



$$I_{DS} = \frac{mZ}{L} \mu_p C_i (V_G - V_T)^2$$

#### In saturation we can easily extract the mobility





### Experimental $\alpha T6$ FET curves





# Experimental $\alpha T6$ FET transfer curves





# Experimental $\alpha T6$ FET transfer curves



For increased  $V_{DS}$  we have more free carriers  $N_A$ 



## Transverse Electric Field Dependence



Experimental:

Slope of transfer curve (mobility  $\mu_p$ ) depends on  $V_G$  (transverse electric field) Higher field  $\rightarrow$  higher mobility

### Literature: Higher field → lower mobility

Example (from Sze, p.449):

"At a given temperature, mobility decreases with increasing effective transverse field"





6th Power law



How to explain this?!



### Experimental: Mobility increases with transverse electric field





Device cross section



Mobility thus depends on film thickness



Device cross section



Mobility is of the first layer(s) and does NOT depend on film thickness

Increased  $V_G$  probes deeper VB states (with higher  $\mu_p$ ?)





For short channels the depletion width at the source and drain become relatively large. The assumption  $E_x >> E_y$  is no longer valid Effects:

- Degradation of sub-treshold region  $(V_{DS} < V_T)$
- $V_T$  depending on L and  $V_{DS}$
- No saturation





- $V_T$  depends on  $V_{DS}$ . "Doping" inhomogeneity?
- 6th power law transfer curves.
- possibly due to  $\mu_p$  depending on  $V_g$  due to film properties.
- No short channel effects seen yet.



Faro, June 2001