Explanation of the Meyer-Neldel Rule

P. Stallinga, Universidade do Algarve (FCT, OptoEl, CEOT)
Rudolstadt, 30 September 2004
Trap states as an explanation of the Meyer-Neldel Rule

P. Stallinga, Universidade do Algarve (FCT, OptoEl, CEOT)
Rudolstadt, 30 September 2004
What is the Meyer-Neldel Rule?

Background: Traps in organic FETs in Faro

Results and discussion
OptoEl-CEOT in Faro

Specialized in electronic characterization of organic and biological electronic devices. Sensitive equipment with custom made control software.

DLTS (the only “organic” DLTS)

Organics-specific FET measurement system
What is the Meyer-Neldel Rule?

Observation without explanation*

The thermal activation energy of a process \(P \) depends on a certain parameter \(z \).

There exists a temperature \(T_{MN} \) where the dependence of \(P \) on \(z \) disappears.

\[
P = P_0 \exp\left(-\frac{E_A}{kT}\right)
\]

\[
P_0 = P_{MN} \exp\left(\frac{E_A}{kT_{MN}}\right)
\]

* Original article: W. Meyer and H. Neldel, Z. Techn. 18, 588 (1937).
Examples of the Meyer-Neldel Rule

Here the MNR is called the Compensation Effect.

<table>
<thead>
<tr>
<th>Processes</th>
<th>Parameters</th>
<th>Devices/materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>current diffusion*</td>
<td>gas concentration</td>
<td>α-Si</td>
</tr>
<tr>
<td>ionic currents</td>
<td>pressure</td>
<td>organic ½cons</td>
</tr>
<tr>
<td></td>
<td>electrical bias</td>
<td>gas detectors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High-Tc supercons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>glasses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>liquid ½cons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polycryst. Si</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCDs</td>
</tr>
</tbody>
</table>
Examples of the Meyer-Neldel Rule

<table>
<thead>
<tr>
<th>Processes</th>
<th>Parameter</th>
<th>Devices/materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>gas concentration</td>
<td>α-Si, organic $\frac{1}{2}$ cons</td>
</tr>
<tr>
<td>diffusion*</td>
<td>pressure</td>
<td>gas detectors, High-Tc supercons</td>
</tr>
<tr>
<td>ionic currents</td>
<td>electrical bias</td>
<td>glasses, liquid $\frac{1}{2}$ cons</td>
</tr>
</tbody>
</table>

...polycryst. Si
...CCDs

* All less-than-perfect-crystalline materials

* Here the MNR is called the Compensation Effect.
Meyer-Neldel Rule in our T6 TFT

Phase transition (?) at 200 K

P. Stallinga et al., J. Appl. Phys. October 2004
Start with classic theory. However: Non-linear Transfer curves observed
Currents are linearized by taking the n^{th} root

Non-linear IV curves observed

![Graph showing non-linear IV curves](image-url)
The fact that the plot is linear in this scale proofs the validity of the model of Poole-Frenkel. P. Stallinga, J.Appl.Phys. October 2004.
Note: Already the fact that a threshold voltage exists in an accumulation-type FET proofs the existence of traps! Theoretically, the threshold voltage is zero (or >0, “Normally-on FET”).

Decaying currents

![Graph showing decaying currents over time](image)
Decaying currents

I(t) = I_0 \exp\left(-\left(\frac{t}{\tau}\right)^\alpha\right)

“Glassy relaxation”* or “stretched exponential”. Transient caused by trapping.

*original article: R. Kohlrausch in Rinteln, Ann. Phys. und Chemie 72, 353 (1847).
Thermally scanned current

An \(I-T\) curve shows that charges are liberated from trap states.

\[I(T) \propto \mu \times p(T) \quad \text{not: } I(T) \propto \mu(T) \times p \]

\(E_A = 170\) meV

\(Tr \rightarrow Tr^- + h\) or \(Tr^+ \rightarrow Tr + h\)
Charges are liberated from trap states.

not \[I(T, V_g) \propto \mu(T, V_g) \times p \]

but \[I(T, V_g) \propto \mu \times p(T, V_g) \]
Amorphous silicon: Shur & Hack

Shur & Hack

\[I_{ds} = \frac{q \mu_0 W}{L} f(T, T_2) \left[C_{ox} \left(|V_g - V_t| \right) \right]^{\left(\frac{2T_2}{T} - 1 \right)} V_{ds} \quad (53) \]

\[f(T, T_2) = N_V \exp \left(\frac{-E_{F0}}{kT} \right) \frac{kT \epsilon}{q} \left(\frac{\sin(\pi T/T_2)}{2\pi \epsilon T_2 kT g_{F0}} \right)^{T_2/T} \quad (51) \]

Notes:

A factor \(q \) was deleted from original Equation 51.

The model is similar to Vissenberg's, with difference that conduction is through band states instead of hopping conduction.
I_{ds} depends on V_g, but not in a classical way (not $\propto V_g$). Non-linear transfer curves

$$I_{ds} = \frac{q\mu_0 W}{L} f (T, T_2) [C_{ox} (|V_g - V_t|)]^{\left(\frac{2T_2}{T} - 1\right)} V_{ds} \quad (53)$$

$$f(T, T_2) = N_V \exp \left(\frac{-E_{F0}}{kT} \right) \frac{kT^2}{q} \left(\frac{\sin(\pi T/T_2)}{2\pi T_2 kT g_{F0}} \right)^{T_2/T} \quad (51)$$
First halve of Meyer-Neldel Rule:

Dependence on V_g disappears at a temperature $T = 2T_2$.

\[I_{ds} = \frac{q\mu_0 W}{L} f(T, T_2) \left[C_{ox} (|V_g - V_t|) \right] \left(\frac{2T_2}{T} - 1 \right) V_{ds} \quad (53) \]

\[f(T, T_2) = N_V \exp \left(\frac{-E_{F0}}{kT} \right) \frac{kT\epsilon}{q} \left(\frac{\sin(\pi T/T_2)}{2\pi \epsilon T_2 kT g_{F0}} \right)^{T_2/T} \quad (51) \]
Second halve of Meyer-Neldel Rule:

Activation energy depends on V_g:
For $T \ll T_2$ the Arrhenius plots are linear and

$$E_A = E_{F0} - kT_2 \left[\ln \left(\frac{1}{2e(kT_2)^2 g_{F0}} \right) - 2 \ln (C_{ox} (|V_g - V_t|)) \right]$$

$$I_{ds} = \frac{q\mu_0 W}{L} f(T, T_2) [C_{ox} (|V_g - V_t|)]^{(2T_2/T_2 - 1)} V_{ds}$$

$$f(T, T_2) = N_V \exp \left(\frac{-E_{F0}}{kT} \right) \frac{kT \epsilon}{q} \left(\frac{\sin(\pi T/T_2)}{2 \pi \epsilon T_2 kT g_{F0}} \right)^{T_2/T}$$

Used: $\sin(x) \approx x$ for $x \ll 1$ and $a^x = \exp(x \ln(a))$
Simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_V</td>
<td>10^{19}</td>
<td>cm$^{-3}$</td>
</tr>
<tr>
<td>C_{ox}</td>
<td>1.92×10^{-4}</td>
<td>F/m2</td>
</tr>
<tr>
<td>E_{F0}</td>
<td>484</td>
<td>meV</td>
</tr>
<tr>
<td>V_{th}</td>
<td>-0.1</td>
<td>V</td>
</tr>
<tr>
<td>g_{p0}</td>
<td>10^{16}</td>
<td>cm$^{-3}$eV$^{-1}$</td>
</tr>
<tr>
<td>T_2</td>
<td>450</td>
<td>K</td>
</tr>
<tr>
<td>W</td>
<td>1</td>
<td>cm</td>
</tr>
<tr>
<td>L</td>
<td>30</td>
<td>μm</td>
</tr>
<tr>
<td>μ_0</td>
<td>3</td>
<td>cm2V$^{-1}$s$^{-1}$</td>
</tr>
<tr>
<td>ϵ</td>
<td>$5\epsilon_0$</td>
<td></td>
</tr>
</tbody>
</table>

Note: No measurements possible at/close to T_2 (currents drop and diverge).
Experiment. Sexithiophene TFT

Note: To avoid stressing, measurements limited to below 220 K (see talk of Henrique)
Experiment. Sexithiophene TFT

![Graph showing the relationship between E_A (meV) and Absolute Gate Bias (V).](35F_Ux.m)
Conclusions

3 things important for organic FETs (T6):

Traps traps & traps

A: Responsible for non-linear transfer curves ($I_{ds} \propto V_g \gamma$)
A: Responsible for non-linear IV curves ($I_{ds} \propto V_{ds} \exp(-\sqrt{V_{ds}})$)
A: Responsible for temperature activation of current
B: Responsible for stressing
 B: (H.L.Gomes et al., Appl. Phys. Lett. 2004)
C: Responsible for the Meyer Neldel Observation
 C: (P. Stallinga et al., to be published)

Thanks:
Henrique Gomes (OptoEl/CEOT)
All members of the MONA-LISA network
CNR-ISM Bologna