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Overview

Introduction of Faro, Opto-El and CEOT

History examples: DLTS, H20, LE-FET

Modeling of Thin-Film Transistors
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Organic Electronics

KLM in-flight brochure
AMS-WAW, 24 sep 2005
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The Algarve

The Algarve is famous for tourism:

300 days per year sunshine

Temperatures all year pleasant:15 - 30oC

Great food, low prices, friendly people

300 km of clean sand beaches

Good airport and other infrastructures

“Ieder voordeel heb z’n nadeel”
(Every advantage has its disadvantage)

- Johan Cruyff
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Universidade do Algarve (UAlg)

Faro, 6 Oct. 2004; 26 oC

10,000 students, 5 Faculties, 4 
Campi, 700 teachers, 60 
courses.

Faculdade de Ciências e 
Tecnologia (FCT), 90 profs.

Departamento de Engenharia 
Electrónica e Informatica 
(DEEI), 20 profs.

3 Courses (ESI, EI and I)

Areas of ESI: Electronics, Control, 
Signal Processing, Telecommunications

The university is the heart of The Algarve
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University

Although being a young university,
The university of the Algarve is the second most
science productive university of Portugal (2004)*.

… and still improving.

Our course (ESI) is becoming first choice for 
Portuguese students of electronic engineering.

* counting number of papers per head
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OptoEl - CEOT

Opto-Electrónica
Universidade do 

Algarve
Founded: 1997

2 members (PhD)

Centro de Electrónica, 
Opto-Electrónica e 
Telecomunicações

Founded in 2001

9 members (PhD)
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OptoEl

In 2003, CEOT was evaluated by an external 
committee of FCT (Portuguese foundation) as “very 
good” and received a 640 k€ equipment investment 
bonus in 2004 apart from the normal individual 
project grants.

Electronics (design of RF electronic 
circuits)

Telecommunications. (Comm. 
protocols, network design, etc)

Opto-Electronics (characterization of 
electronic materials, sensors)
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Opto-El

Specialized in characterization of organic 
electronic materials and devices

Apart from that, recently started
sensors: TNT, DNA
instrumentation: quartz-crystal oscillator, MEMs, 

etc.

Organic electronics HIV detector
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example: DLTS

Opto-El. First successful implementation of a DLTS 
experiment in an organic material

P. Stallinga et al., J. Appl. Phys. 89, 1713(2001).pdf
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example: H20
All organic materials suffer from the detrimental effects 
of water*. *H.L. Gomes et al., submitted (2005).pdf

phase transition at 200 K Attributed to water

Above 200 K all organic materials are electrically unstable
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source
drain

1 mm

example: Light-emitting FET
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You are looking at the first picture ever taken showing light 
coming out of an FET … (Bologna, 2003)

C. Santato et al., Synth. Metals 146, 329 (2004)

example: Light-emitting FET
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Organic TFTs

Main topic for today:  (organic) thin-film transistors

Tradition is to use the inversion-channel metal-oxide field-
effect-transistor (MOS-FET) model for TFTs

I will show you this is nonsense and then present an 
alternative 
(“If you don’t give a solution, you are part of the problem!”)
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Inversion-channel MOS-FET

taken from our OptoEl theory pages, 
http://www.ualg.pt/fct/adeec/optoel/theory

Cox = εox/d

n-type
p-type
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Inversion-channel MOS-FET

Next slide: look at cross-section of device

n-type
p-type
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Inversion-channel MOS-FET

“Flat-band” situation
bulk is p-type

Starting structure: MIS diode
(= FET  without electrodes)

En
er

gy

Space
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Inversion-channel MOS-FET

“Depletion” Applying bias

“gate” “source-drain”
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Inversion-channel MOS-FET

“Onset of inversion” Free charge density, n,
grows exponentially with
bias
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Inversion-channel MOS-FET

Free charge density n grows 
linearly with bias

“Strong inversion”

electron 
channel

Defines “threshold
voltage” Vt as voltage 
needed to start a channel
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Inversion-channel MOS-FET: 1

IV curves                                   transfer curves

FET = MIS diode with lateral electrodes connected to 
measure the channel conductivity (charge density)
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Inversion-channel MOS-FET

Convention in literature
p ? 

Just reverse band bending!

“Accumulation”
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Inversion-channel MOS-FET

“Strong Accumulation”

hole channel

Convention in literature
p ? 

Just reverse band bending!
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Thin-film transistors (TFTs)

1: This doesn’t work for TFTs!

- thin films cannot accommodate band bendings!
(there is simply no space for them)
band-bendings are of order 300 nm (NA=1016 cm-3), 
films are 1 monolayer (5 nm), without loss of
functionality.

2: Concept of band-bending in accumulation is nonsense!

- There are no electronic levels to store immobile charge
needed for band bending.

Two fundamental problems:
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Layer thickness
(number of monolayers)

0               1               2               3

Thin-film transistors (TFTs)

Only first monolayer is important*

*F. Biscarini et al.
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2: Concept of band-bending in accumulation is nonsense!
Poisson’s Equation:

Band bending in accumulation? Nonsense!

Inversion:
Negative charge needed
Band bending is caused by un-
compensated ionized acceptors

Accumulation:
Positive charge needed. but: 
Acceptors can only be neutral or 
negative

∫∫= 2)()( dxxxV ρ
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2: Concept of band-bending in accumulation is nonsense!

Band bending in accumulation? Nonsense!

Accumulation:
Positive charge can only appear in the material as 
free holes. They will therefore always move towards 
the interface. No space charge (band bending)
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Postulate for TFT: Purely two-dimensional treatment

All charge is at the interface.

])([)( gox VxVCx −=ρ

x

C/m2 F/m2 V

Vg

D S
W

(note the two-dimensional units)



P. Stallinga, Kazimierz Dolny October 2005

Is this allowed? How thick is an accumulation layer?

])([)( gox VxVCx −=ρ

Example: Silicon TFT, typical values: 
Vg = −1 V, dox = 200 nm (Cox = 170 µF/m2) : 

ρ = 0.17 mC/m2

with NV = 1.04 x 1019 cm−3:
h < 1 Å

Vg

D S
W

x
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I: Assume ρ = p, free holes

])([)( gox VxVCxp −=

Vg

x
D S

II: Locally, current is proportional to 
charge density, mobility, 
electric field and channel width

WqxpxI x µ)()( =
dx

xdV )(

(I)

(II)

W

Differential equations
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Solution

Vg

x

D S Boundary conditions:
V(0) = 0
V(L) = Vds
Ix(x) = Ids

)( 2
2
1

dsgdsoxds VVVC
L

WI −= µ

Vds

x = L x = 0

solution:
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)( 2
2
1

dsgdsoxds VVVC
L

WI −= µ

Simulation

Exactly equal to MOS-FET model!



P. Stallinga, Kazimierz Dolny October 2005

The basic model doesn’t include

• Donors or acceptors

• Flat-band voltage

• Diffusion currents

and still explain the data better
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“Contact effects”

Theory: Experiment:

Literature: contact effects
Waragai, PRB 52, 1786 (1995).
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“Contact effects”

Literature: contact effects.

The idea is simple. Non-low-ohmic contacts hinder the 
injection of carriers and can cause non-linearities.

(Too) often used to explain the data.

“sweep-under-the-carpet” argumentation.

Next slides: simulations of high-resistive contacts and 
Schottky barriers.
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“Contact effects”, simulation of contact resistance

current crowding 
observed for high R
(curves indep. of Vg)

No non-linearities

experiment:

?
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“Contact effects”, simulation with Schottky barriers

Double Schottky barrier:

Ids = tanh(Vds) No non-linearities!

experiment:

?
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Simulation with Poole-Frenkel

Poole-Frenkel:
“Field-assisted thermal 
activation from traps”

Simulation:

])([)( gox VxVCxp −=

WxqxpxI x )()()( µ=
dx

xdV )(

(I)

(II)

)/)(exp()( 0 dxxdVx µµ = (III)
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Modeling the contacts

This is, of course, only half the story.

If contacts are not resistance nor Schottky barrier, what are 
they?
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Modeling the contacts

First observation. Analysis of an MOS-FET n-p-n Si-Si-Si device

drain     channel    source
p             n              p

drain     channel    source
p             n              p

zero bias: Vg = Vt:

EF

EC

EV

Barrier disappears exactly at start of strong inversion
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Metal-1/2con-metal contact

1: charge will raise potential of channel (p = CoxV)

2: charge will move Fermi level (p = Exp(-EF/kT))
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Metal-1/2con-metal contact

The channel has a potential ∆V, up to ~1 V even without bias

There exists a residual barrier qφB of order 50-100 meV
(depends on bias)
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The channel has a potential ∆V, up to ~1 V even without bias

Bürgi Appl. Phys. Lett. 80, 2913 (2002)

In-channel voltage profiling of Bürgi et al.
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There exists a residual barrier qφB of order 50-100 meV
(depends on bias)

Yagi, Appl. Phys. Lett. 84, 813(2004)

80 meV

Contact barrier height, Yagi et al.

Pentacene TFT with gold 
electrodes
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Summary
New model can explain

• Basic electrical characteristics

• Contact effects

• Ambipolar devices

where conventional model fails.

Adding a HUGE density of traps can explain

• Bias-dependent mobility µ = Vg
α, Ids = Vg

α+1

• Temperature dependence, µ = Exp(−Ea/kT)

• Transients, exponential and non-exponential, 
Ids = Exp(−(t/τ)β)

where conventional models fail.
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Final remark: Occam’s Razor

“One should not increase, beyond 
what is necessary the number of 
entities required to explain anything”

- William of Occam

Occam’s Razor:

The basic model doesn’t include

• Donors or acceptors

• Flat-band voltage

• Diffusion currents

and still explain the data better
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The basic model doesn’t include

• Donors or acceptors

• Flat-band voltage

• Diffusion currents

“Of all the models explaining the data, 
that one with the least features is the 
best”

- William of Occam

Occam’s Razor:

Final remark: Occam’s Razor

The basic model doesn’t include

• Donors or acceptors

• Flat-band voltage

• Diffusion currents

and still explain the data better
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