Electrical characterization of organic semiconductor devices

P. Stallinga, Universidade do Algarve, Portugal Hong Kong, January 2007

Universidade do Algarve (UAlg)

10,000 students, 5 Faculties, 4 campi, 700 profs., 60 courses.

Faculdade de Ciências e Tecnologia (FCT), 90 profs.

Departamento de Engenharia Electrónica e Informatica (DEEI), 20 profs.

3 Courses (ESI, EI and I)

Areas of ESI: Electrónica, Control, Signal Processing, Telecommunications

The university is the heart of The Algarve

Faro, 6 Oct. 2004; 26 °C

OptoEl

Centro de Electrónica, **Opto-Electrónica e** Telecomunicações Founded in 2001 9 members (PhD)

circuits) **Opto-Electronics** (characterization

Electronics (design of RF electronic

protocols, network design, etc)

electronic materials, sensors)

OptoEl

- * Characterization of organic materials and devices
- * Sensors (ex. TNT)
- * Instrumentation (ex. HIV detection)

Founded: 1997, 2 members (PhD)

Specialized in electronic characterization of organic electronic devices.

Sensitive equipment with custom made control software.

DLTS (the only "organic" DLTS in the world)

Organics-specific FET measurement system

Admittance spectroscopy

Environment ideal for studying solar cells ©

OptoEl Cooperations in last 6 years

P. Stallinga, Hong Kong, 22 January 2007

"Organic electronic materials" is a hot topic. Tremendous advances in chemistry Electrical description: standard textbook!

Electronics of the past

If organic materials are going to be a success in the real world they need to focus on strong points:

- cheap and flexible

Devices based on expensive techniques (MBE, lithography, vacuum deposition, etc.) are doomed to fail

The successful devices are "shitty devices"

Don't compete with silicon ("if it *can* be done in silicon, it *will* be done in silicon")

We need to focus our studies on bad devices (Remember what they initially said about ½cons: "semiconductors are not worth to study. They are dirty science")

Printable electronics: electronics on paper

Image from lecture of Magnus Berggren, Linköping University at TPE04 (Rudolstadt)

P. Stallinga, Hong Kong, 22 January 2007

Printed electronics

Using existing technologies (offset, gravure and flexo printing) to produce electronic circuits

... only organic electronics!

Reinhard Baumann, MAN Roland Druckmaschinen AG, Germany

Our work: modeling. Inspiration: simplicity is the key!

"One should not increase, beyond what is necessary, the number of entities required to explain anything"

William of Occam, 1288-1348

"Perfection is reached not when there is nothing left to add, but when there is nothing left to take away"

Saint-Exupéry 1900-1944

Semiconductor means "with electronic bandgap"

Organic semiconductors means "with conjugated backbone"

 $\cdots - \mathbf{C} = \mathbf{C} - \mathbf{C} = \mathbf{C} - \mathbf{C} = \cdots$

A semiconductor does not conduct! 4 ways to make it conduct:

T=300 K: kT = 26 meV: $n=p \sim \text{Exp}(-500/26) \sim 0$

Diodes

example: admittance spectroscopy to determine interface states

P. Stallinga, Hong Kong, 22 January 2007

Admittance spectroscopy. Interface states in MIS diode

Interface states

For interface states, τ depends on bias:
Reverse bias: deeper states, τ longer.
Forward bias: shallower states, τ shorter.
For bulk states, τ doesn't depend on bias.

Intensity of peak in Loss ($L = 1/\omega R$) directly proportional to density of states.

Interface states

DLTS

DLTS: measuring τ via capacitance transients

TFTS

The Algarve model

Thin-film field-effect transistors are three-terminal devices (Source, Drain, Gate)

As an application, three-terminal devices are used to control the current in, for instance, active matrix displays.

As a research tool, they serve to measure the mobility

The MOS-FET model is the de facto standard for analyzing the thin-film transistors.

It seems to describe it well and "why do you need another model if you already have a working one?"

LIN:
$$I_{ds} = (W/L) C_{ox} \mu (V_g - V_t) V_{ds}$$

SAT: $I_{ds} = (W/L) C_{ox} \mu (V_g - V_t)^2$

taken from our OptoEI theory pages, http://www.ualg.pt/fct/adeec/optoel/theory

P. Stallinga, Hong Kong, 22 January 2007

Next slide: look at cross-section of device

"Flat-band" situation bulk is p-type Starting structure: MIS diode (= FET without electrodes)

"Depletion"

Applying bias

Standard inversion channel FETs

http://www.ualg.pt/fct/adeec/optoel/theory/fet/

Organic FETs

Thin-film transistors (TFTs)

Why a TFT is not a MOS-FET?

The MOS-FET model

Why a TFT is not a MOS-FET?

1. A TFT is made of a **thin** film and cannot accommodate band bendings. No space!

The MOS-FET model

Why a TFT is not a MOS-FET?

2. A TFT normally works in **accumulation** and thus cannot store the immobile charge needed for band bendings (there are no electronic states, $N_{\rm D}^+$).

Band bending in accumulation? Nonsense!

Poisson's Equation:

$$V(x) = \iint \rho(x) dx^2$$

Accumulation: Positive charge ρ can only appear in the material as free holes. They will therefore always move towards the interface. No space charge (band bending)

The MOS-FET model

Why a TFT is not a MOS-FET?

1. A TFT is made of a **thin** film and cannot accommodate band bendings.

2. A TFT normally works in **accumulation** and thus cannot store the immobile charge needed for band bendings (there are no electronic states, $N_{\rm D}^{+}$).

There are no band bendings!

Not even in thick film transistors! Not even at contacts!

The Algarve TFT model

One single simple axiom:

Any charge induced by the gate is at the interface The device is purely **two-dimensional**

Postulate for TFT: Purely two-dimensional treatment

All charge is at the interface.

$$\rho(x) = C_{ox}[V(x) - V_g]$$

 C/m^2 F/m^2 V

(note the two-dimensional units!)

Is this allowed? How thick is an accumulation layer?

$$\rho(x) = C_{ox}[V(x) - V_g]$$

Example: Silicon TFT, typical values:

$$V_{\rm g} = -1 \text{ V}, d_{\rm ox} = 200 \text{ nm} (C_{\rm ox} = 170 \ \mu\text{F/m}^2) \text{ :}$$

 $\rho = 0.17 \ \text{mC/m}^2$
with $N_{\rm V} = 1.04 \ \text{x} \ 10^{19} \ \text{cm}^{-3}$:
 $d < 1 \ \text{\AA}$

Differential equations. Trap-free materials

I: Assume $\rho = p$, free holes

II: Locally, current is proportional to charge density, mobility, electric field and channel width

$$p(x) = C_{ox} [V(x) - V_g] / q \qquad (I)$$
$$I_x(x) = p(x) q \mu W \frac{dV(x)}{dx} \qquad (II)$$

Solution

Boundary conditions: V(0) = 0 $V(L) = V_{ds}$ $I_x(x) = I_{ds}$

solution:

$$I_{ds} = \frac{W}{L} \mu C_{ox} (V_{ds} V_g - \frac{1}{2} V_{ds}^2)$$

P. Stallinga, Hong Kong, 22 January 2007

Simulation

Exactly equal to MOS-FET model!

The Algarve TFT model

The Algarve TFT model

The simple model **doesn't** include (need)

- Donors or acceptors
- Flat-band voltage
- Diffusion currents

and still explain the data better (as will be shown)

William of Occam and Saint-Exupéry would be happy!

"Contact effects"

Theory:

Experiment:

Waragai, PRB 52, 1786 (1995).

Literature: contact effects

Literature: contact effects.

The idea is simple. Non-low-ohmic contacts hinder the injection of carriers and can cause non-linearities.

(Too) often used to explain the data.

"sweep-under-the-carpet" argumentation.

Next slides: simulations of high-resistive contacts and Schottky barriers.

"Contact effects", simulation of contact resistance

"current crowding" observed for high R (curves indep. of V_{g})

No non-linearities

"Contact effects", simulation with Schottky barriers

Schottky barriers come in pairs!

Modeling the contacts

Even the symmetry of a Schottky barrier is not correct:

"If you don't give a solution, you are part of the problem!"

If non-linearities are not because of resistance or Schottky barrier, what is their cause?

Traps!

Simulation with Poole-Frenkel

$$p(x) = C_{ox}[V(x) - V_g] \qquad (I)$$

$$I_x(x) = p(x)q\mu(x)W\frac{dV(x)}{dx} \qquad (II)$$

$$\mu(x) = \mu_0 \exp(dV(x)/dx) \qquad (III)$$

This is, of course, only half the story.

If contacts are not resistance nor Schottky barrier, what are they?

Metal-1/2 con-metal contact

1: charge will raise potential V of channel ($p = C_{ox}V$)

2: charge will move Fermi level ($p = \exp(-E_F/kT)$)

Metal-1/2con-metal contact

1: The channel has a potential ΔV , up to ~1 V even without bias

2: There exists a residual barrier $q\phi_{\rm B}$ of order 50-100 meV (depends on bias!)

In-channel voltage profiling of Bürgi et al.

The channel has a potential ΔV , up to ~1 V even without bias

Bürgi Appl. Phys. Lett. 80, 2913 (2002)

Contact barrier height, Yagi et al.

Yagi, Appl. Phys. Lett. 84, 813(2004)

The Algarve TFT model

The are no "contact effects" !!

$$I \rightarrow p \rightarrow E_{\rm F} - E_{\rm V} \rightarrow \phi_{\rm E}$$

measurable current? --> barrier is less than 100 meV!

The Algarve TFT model. Ambipolar

Ambipolar TFT (light emitting)

Non-linear transfer curves

But, how to explain the non-linear transfer curves?

The Algarve TFT model. Traps

The Algarve TFT model. Traps

- 1: All charge is directly at interface
- 2: Charge can be free charge (h) or trapped charge (T^+)
- 3: Sum of them is depending on local bias $(p + N_T^+ \sim V_g V(x))$
- 4: Relative densities (can) depend on temperature and bias (Fermi-Dirac distribution *f*(*E*))
- 5: Thermal equilibrium reached instantaneously
- 6: Currents are proportional to free charge only $(I_{ds} \sim p)$
- 7: Mobility is defined via derivative of transfer curve in linear region ($\mu_{FET} \sim dI_{ds}/dV_g$)

No parameters. No
$$N_{\rm A}$$
, $V_{\rm T}$, $V_{\rm FB}$, ϵ , $E_{\rm g}$, etc.

$$p(V_{\rm g}) + N_{\rm T}^{+}(V_{\rm g}) = -C_{\rm ox}V_{\rm g}/q$$

P. Stallinga, Hong Kong, 22 January 2007

Traps

p and $N_{\rm T}^{+}$ can depend on temperature and bias in a different way, thus the mobility can depend on temperature and bias

a: trap-freeb: abundant discrete trapc: exponential trapd: exponential trap and VB

Traps, Arrhenius plots

P. Stallinga, Hong Kong, 22 January 2007

Summary, Arrhenius plots

The only model that explains our experimental data

Stressing

If thermal equilibrium takes a long time to establish:

Conclusions 1

Algarve TFT model with traps

Is very, very simple

- Can explain mobilities in wide range (10⁻⁸ 10² cm²/Vs) ...
- ... without change in conduction mechanism.
- Can explain Vg-bias-dependent mobility (!)
- Can explain non-linearities in IV curves
- Can explain temperature-dependent mobility
- Can explain bias-and-temperature-dependent mobility (Meyer-Neldel Rule)
- Can explain contact effects
- Can explain ambipolar devices
- Can explain stressing effects
- Can explain admittance spectra

Algarve TFT model with traps

Because of it's simplicity, measurements cannot elucidate conduction mechanism

only requirement: conductive states and immobile states

10Q4ur@+¥

Acknowledgement: FCT (Fundação para Ciência e Tecnologia de Portugal) projecto POCTI/FAT/47952/2002 FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA E DO ENSINO SUPERIOR

Portugal

Related publications: Organic Electronics, Synthetic Metals (2006/2007)

pjotr@ualg.pt

