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Universidade do Algarve (UAlg)

Faro, 6 Oct. 2004; 26 oC

10,000 students, 5 Faculties, 4 
campi, 700 profs., 60 courses.

Faculdade de Ciências e 
Tecnologia (FCT), 90 profs.

Departamento de Engenharia 
Electrónica e Informatica 
(DEEI), 20 profs.

3 Courses (ESI, EI and I)

Areas of ESI: Electrónica, Control, 
Signal Processing, Telecommunications

The university is the heart of The Algarve
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OptoEl

Centro de Electrónica, 
Opto-Electrónica e 
Telecomunicações

Founded in 2001

9 members (PhD)

Electronics (design of RF electronic 
circuits)

Opto-Electronics (characterization of 
electronic materials, sensors)

Telecommunications. (communication 
protocols, network design, etc)
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OptoEl

Specialized in electronic characterization of organic 
electronic devices.

Sensitive equipment with custom made control software.
DLTS (the only “organic” DLTS in the world)

Organics-specific FET measurement system

Admittance spectroscopy

Environment ideal for studying solar cells ☺

Founded: 1997, 2 members (PhD)

* Characterization of organic materials 
and devices

* Sensors (ex. TNT)
* Instrumentation (ex. HIV detection)
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OptoEl Cooperations in last 6 years
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Organic Materials

“Organic electronic materials” is a hot topic.

Tremendous advances in chemistry

Electrical description: standard textbook!
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Electronics of the past
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Electronics of the Future
“Ambient intelligence”
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Organic Materials

If organic materials are going to be a success in the real 
world they need to focus on strong points:

- cheap and flexible

Devices based on expensive techniques (MBE, lithography, 
vacuum deposition, etc.) are doomed to fail

The successful devices are “shitty devices”

Don’t compete with silicon (“if it can be done in silicon, it will
be done in silicon”)

We need to focus our studies on bad devices
(Remember what they initially said about ½cons: “semicon-
ductors are not worth to study. They are dirty science”)
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Image from lecture of Magnus Berggren, 
Linköping University at TPE04 (Rudolstadt) 

Printable electronics: electronics on paper
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Reinhard Baumann,
MAN Roland Druckmaschinen AG, Germany

Using existing technologies 
(offset, gravure and flexo
printing) to produce 
electronic circuits

… only organic electronics!

Printed electronics
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Our work: modeling. Inspiration: simplicity is the key!

“Perfection is reached not when there is 
nothing left to add, but when there is 
nothing left to take away”

Saint-Exupéry 1900-1944

“One should not increase, beyond what 
is necessary, the number of entities 
required to explain anything”

William of Occam, 1288-1348
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Semiconductor means “with electronic bandgap”

Organic semiconductors means 
“with conjugated backbone”

.  .  .  . - C = C – C = C – C = .  .  .  .

Semiconductors

>10 eVSiO2

1.12 eVSi

2.5 eVPolymers

1.42  eVGaAs

0.66 eV

3.36 eV

5.47 eV

Band gap

Ge

GaN

C (diamond)

Material

IR
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Conjugated organics
have paths with alternating
single and double bonds

Examples

Very good for FETs

Very good for LEDs
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1 Chemically (“doping”)
A → A− + h
D → D+ + e

2 Optically
hν → e + h

3 Electrically (“field effect”)
p ~ Vg

4 Thermally
kT → e + h

Semiconductors

A semiconductor does not conduct!
4 ways to make it conduct:

T=300 K: kT = 26 meV: n=p ~ Exp(-500/26) ~ 0
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Diodes
example: admittance spectroscopy to determine interface states
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Admittance spectroscopy. Interface states in MIS diode

When bias is correct: Filling and emptying of states 
with time constant
τ = exp(ET/kT)

Admittance spectroscopy: Loss: L = 1/ωR
maximum at ωm = 1/τ

m   i      s m   i      s m   i      s

bias bias

τ

no signal no signaladditional Loss
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Interface states

For interface states, τ depends on bias:
Reverse bias: deeper states, τ longer.
Forward bias: shallower states, τ shorter.

For bulk states, τ doesn’t depend on bias.

Intensity of peak in Loss (L = 1/ωR) directly proportional 
to density of states.

bias bias
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Interface states

P.Stallinga et al.,
Org. Electr. 3, 43 (2002)
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DLTS

P.Stallinga et al.,
J. Appl. Phys. 89, 1713 (2001)

type

accepto r

majority 

majori ty

minority

minority

activatio n
energy

0.12 eV

0.30 eV  

1.0 eV

0.48 eV

1.3 eV

lab el

AF 0

AF 1

AF 2

DF 1

DF 2

DLTS: measuring τ via capacitance transients
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TFTs
The Algarve model
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Three-terminal devices: thin-film FETs

Thin-film field-effect transistors are three-terminal devices 
(Source, Drain, Gate)

As an application, three-terminal devices are used to 
control the current in, for instance, active matrix displays.

As a research tool, they serve to measure the mobility

D S

G
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Three-terminal devices: thin-film FETs

The MOS-FET model is the de facto standard for analyzing 
the thin-film transistors.

It seems to describe it well and “why do you need another 
model if you already have a working one?”

LIN: Ids = (W/L) Cox µ (Vg−Vt) Vds

SAT: Ids = (W/L) Cox µ (Vg−Vt)2

D S

G
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Inversion-channel MOS-FET

taken from our OptoEl theory pages, http://www.ualg.pt/fct/adeec/optoel/theory

Cox = εox/d

n-type
p-type
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Inversion-channel MOS-FET

Next slide: look at cross-section of device

n-type
p-type
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Inversion-channel MOS-FET

“Flat-band” situation
bulk is p-type

Starting structure: MIS diode
(= FET  without electrodes)

En
er

gy

Space
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Inversion-channel MOS-FET

“Depletion” Applying bias

“gate” “source-drain”

∫∫= 2)()( dxxxV ρ

∫∫ −= 2dxN A
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Inversion-channel MOS-FET

Free charge density n grows 
linearly with bias

“Strong inversion”

electron 
channel

Defines “threshold
voltage” Vt as voltage 
needed to start a channel
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IDS = µ(Z/L) Cox (VG−VT)VDS 

IDS = (1/2)µ(Z/L) Cox (VG−VT)2

LIN:

SAT:

Standard inversion channel FETs

http://www.ualg.pt/fct/adeec/optoel/theory/fet/

IV curves                        transfer curves
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Organic FETs

LIN: Ids = (W/L) Cox µ (Vg−Vt) VdsLIN: Ids = (W/L) Cox µ (Vg−Vt)1+γ Vds

γ = 5 is not a 
small 
perturbation!

In the so-called linear region:
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Accumulation-channel MOS-FET?

Convention in literature
p ? 

Just reverse band bending!

“Accumulation”
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Accumulation-channel MOS-FET?

“Strong Accumulation”

hole channel

Convention in literature
p ? 

Just reverse band bending!
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ca
rr

ie
r m

ob
ili

ty

Layer thickness
(number of monolayers)

0               1               2               3

Thin-film transistors (TFTs)

Only first monolayer is important*

*F. Biscarini et al.

Why a TFT is not a MOS-FET?
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The MOS-FET model
Why a TFT is not a MOS-FET?

1. A TFT is made of a thin film and cannot accommodate 
band bendings. No space!
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The MOS-FET model
Why a TFT is not a MOS-FET?

2.   A TFT normally works in accumulation and thus cannot 
store the immobile charge needed for band bendings 
(there are no electronic states, ND

+).

ND
+ + nND

+ ND
+ + p

Poisson:
2)( dxNxV D∫∫ +=
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Band bending in accumulation? Nonsense!

Accumulation:
Positive charge ρ can only appear in the material as 
free holes. They will therefore always move towards 
the interface. No space charge (band bending)

Poisson’s Equation:
∫∫= 2)()( dxxxV ρ



pjotr@ualg.ptP. Stallinga, Hong Kong, 22 January 2007

The MOS-FET model
Why a TFT is not a MOS-FET?

1. A TFT is made of a thin film and cannot 
accommodate band bendings.

2. A TFT normally works in accumulation and thus 
cannot store the immobile charge needed for band 
bendings (there are no electronic states, ND

+).

There are no band bendings!

Not even in thick film transistors! Not even at contacts!
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The Algarve TFT model

Any charge induced by the gate is at the interface

The device is purely two-dimensional

One single simple axiom:
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Postulate for TFT: Purely two-dimensional treatment

])([)( gox VxVCx −=ρ

x

C/m2 F/m2 V

Vg

D S
W

(note the two-dimensional units!)

All charge is at the interface.
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Is this allowed? How thick is an accumulation layer?

])([)( gox VxVCx −=ρ

Example: Silicon TFT, typical values: 
Vg = −1 V, dox = 200 nm (Cox = 170 µF/m2) : 

ρ = 0.17 mC/m2

with NV = 1.04 x 1019 cm−3:

d < 1 Å

Vg

D S
W

x
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I: Assume ρ = p, free holes

qVxVCxp gox /])([)( −=

Vg

x
D S

II: Locally, current is proportional to 
charge density, mobility, 
electric field and channel width

WqxpxI x µ)()( =
dx

xdV )(

(I)

(II)

W

Differential equations. Trap-free materials
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Solution

Vg

x

D S Boundary conditions:
V(0) = 0
V(L) = Vds
Ix(x) = Ids

)( 2
2
1

dsgdsoxds VVVC
L

WI −= µ

Vds

x = L x = 0

solution:
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)( 2
2
1

dsgdsoxds VVVC
L

WI −= µ

Simulation

Exactly equal to MOS-FET model!
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The Algarve TFT model

p

V
x x x x

“Trapless device” D S

G
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The simple model doesn’t include (need)

• Donors or acceptors

• Flat-band voltage

• Diffusion currents

and still explain the data better (as will be 
shown)

The Algarve TFT model

William of Occam and Saint-Exupéry would be happy!
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“Contact effects”

Theory: Experiment:

Literature: contact effects
Waragai, PRB 52, 1786 (1995).
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“Contact effects”

Literature: contact effects.

The idea is simple. Non-low-ohmic contacts hinder the 
injection of carriers and can cause non-linearities.

(Too) often used to explain the data.

“sweep-under-the-carpet” argumentation.

Next slides: simulations of high-resistive contacts and 
Schottky barriers.
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“Contact effects”, simulation of contact resistance

“current crowding” 
observed for high R
(curves indep. of Vg)

No non-linearities

experiment:

?
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“Contact effects”, simulation with Schottky barriers

Double Schottky barrier:

Ids = tanh(Vds) No non-linearities!

experiment:

?

Schottky barriers come in pairs!
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Modeling the contacts

Even the symmetry of a Schottky barrier is not correct:

Schottky

x
y z

TFT

metal
semicon

Poisson’s Equation
can be used

2)( dxNxV D∫∫ +=

Poisson’s Equation
cannot be used
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Modeling the contacts

“If you don’t give a solution, you are part of the problem!”

If non-linearities are not because of resistance or Schottky 
barrier, what is their cause?

Traps!
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Simulation with Poole-Frenkel

Poole-Frenkel:
“Field-assisted thermal 
activation from traps”

Simulation:
fits, with only 1 (one) fitting 
parameter (ε)

])([)( gox VxVCxp −=

WxqxpxI x )()()( µ=
dx

xdV )(

(I)

(II)

)/)(exp()( 0 dxxdVx µµ = (III)
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Modeling the contacts

This is, of course, only half the story.

If contacts are not resistance nor Schottky barrier, what are 
they?
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Metal-½con-metal contact

1: charge will raise potential V of channel (p = CoxV)

2: charge will move Fermi level (p = Exp(-EF/kT))
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Metal-1/2con-metal contact

1: The channel has a potential ∆V, up to ~1 V even without bias

2: There exists a residual barrier qφB of order 50-100 meV
(depends on bias!)
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The channel has a potential ∆V, up to ~1 V even without bias

Bürgi Appl. Phys. Lett. 80, 2913 (2002)

In-channel voltage profiling of Bürgi et al.
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There exists a residual barrier qφB of order 50-100 meV
(depends on bias)

Yagi, Appl. Phys. Lett. 84, 813(2004)

80 meV

Contact barrier height, Yagi et al.

Pentacene TFT with gold 
electrodes
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measurable current?         barrier is less than 100 meV!

The Algarve TFT model
The are no “contact effects” !!

metal valence band

Ι p EF−EV φB

φB
EF

EV

conduction band EC
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The Algarve TFT model. Ambipolar

p

V
x x x x

ambipolar:
hν

LE-FET

X
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Ambipolar TFT (light emitting)

Transfer IV  

dual injection
(small VG)

single injection
(large VG)

thin lines thick lines
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source

drain

1 mm

Muccini, CNR Bologna
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Non-linear transfer curves

LIN: Ids = (W/L) Cox µ (Vg−Vt)1+γ Vds

γ = 5 is not a 
small 
perturbation!

But, how to explain the non-linear transfer curves?

Traps!
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The Algarve TFT model. Traps

Ids(Vg) ~ p(Vg)

p

V
x x x x

Calculate p as a function of Vg
will yield effective mobility µFET

At small Vds, 
homogeneous device
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The Algarve TFT model. Traps

1: All charge is directly at interface

No parameters. No NA, VT, VFB, ε, Eg, etc.

2: Charge can be free charge (h) or trapped charge (T+)
3: Sum of them is depending on local bias (p + NT

+ ~ Vg-V(x))
4: Relative densities (can) depend on temperature and

bias (Fermi-Dirac distribution f(E))

6: Currents are proportional to free charge only (Ids ~ p) 
7: Mobility is defined via derivative of transfer curve

in linear region (µFET ~ dIds/dVg)

5: Thermal equilibrium reached instantaneously
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Traps

p(Vg) + NT
+(Vg) = −CoxVg/q

Vg = 0 Vg < 0

CB

VB
trap
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Traps

p and NT
+ can depend on temperature and bias in

a different way, thus the mobility can depend on 
temperature and bias

a: trap-free
b: abundant discrete trap
c: exponential trap
d: exponential trap and VB

µFET(Vg, T)
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Traps, Arrhenius plots

µ = µ(Vg)Meyer-Neldel Rule

“Standard MOS-FET” “Poole-Frenkel”, µ = µ(T)Trap free: Abundant trap:

Expon. trap: Expon. trap & VB:
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Summary, Arrhenius plots

µ = µ(Vg)Expon. trap & VB:

Stallinga et al., JAP 96, 5277 (2004)

The only model that explains our experimental data

experiment: theory:
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Stressing
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Time

If thermal equilibrium takes a long time to establish:
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Conclusions 1

Algarve TFT model with traps

Can explain Vg-bias-dependent mobility (!)

Can explain temperature-dependent mobility
Can explain bias-and-temperature-dependent mobility

(Meyer-Neldel Rule)

Can explain mobilities in wide range (10-8 – 102 cm2/Vs) … 
… without change in conduction mechanism.

Is very, very simple

Can explain contact effects
Can explain ambipolar devices

Can explain non-linearities in IV curves

Can explain stressing effects
Can explain admittance spectra
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Conclusions 2

Because of it’s simplicity, measurements cannot elucidate 
conduction mechanism

only requirement: conductive states and immobile states

Algarve TFT model with traps
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Conclusions

10Q4ur@+¥
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