
Imperative Programming: Lecture T-2

Lecture 2: Computers

What is a computer? According to the Columbia Encyclopedia it is
"a device capable of performing a series of arithmetic or logical
operations. A computer is distinguished from a calculating machine,
such as an electronic calculator, by being able to store a computer
program (so that it can repeat its operations and make logical decisions),
by the number and complexity of the operations it can perform, and by
its ability to process, store, and retrieve data without human
intervention."

Existem vários tipos de computadores. Today, when we say 'computer'
we mean a digital computer. Historically, there also existed mechanical
and analog (electrical) computers.
The first mechanical computer was designed by
Charles Babbage in the beginning of the 19th century
(around 1815)! For this reason, Babbage is often

called "The father of computing". Famous is also his Difference Engine. If you want to
know more about Charles Babbage, click here.
The first electronic computer, processing data in digital format was called ENIAC just
before the second word war (1939). The first commercially available computer was the
UNIVAC (in 1951). At that time it was thought that a handful of computers, distributed
around the world, would be sufficient to take care of all computer calculations.
Nowadays, nearly everybody in the western world has a computer at home, much more powerful than
those first computers.

Computers are categorized by both size and the number of people who can use them at the same time:

Supercomputers

sophisticated machines designed to perform complex calculations at maximum
speed; they are used to model very large dynamic systems, such as weather patterns.

An example is the Cray SV2 (see picture), which is the size of an average living

room.

Mainframes

the largest and most powerful general-purpose systems, are designed to meet the
computing needs of a large organization by serving hundreds of computer terminals
at the same time.
Imagine insurance companies with all their documents internally shared over a
network. All employees can retrieve and edit the same data.

Minicomputers though somewhat smaller, also are multiuser computers, intended to meet the needs
of a small company by serving up to a hundred terminals.

Microcomputers

computers powered by a microprocessor, are subdivided into personal computers and
workstations.
Personal computers are what most people have at home.

Imperative Programming: Lecture T-2

Examples:

IBM PC and compatibles with a microprocessor like the
Intel Pentium IV, 1.5 Ghz. Portable computers are a
portable variant of microcomputers

Apple Macintosh encorporating the Motorola processor family.

Processors

Many home appliances, like washing machines and ovens, contain a small processor
that is controlling the machine. These are very small computers that have been
programmed in the factory in hardware and cannot be programmed by the user. As
such, they can probably not be considered computers, but are still important to
mention. Some more-advanced home appliances, like satellite receivers or
home-cinema equipment, are running quite sophisticated programs which follow the
rules which will be presented in this lecture.

Note: with the speed the technology is advancing we can say that "the supercomputers of today are the
(personal) microcomputers of tomorrow"

Hardware vs. software

Two important things to distinguish are hardware and software. Hardware is everything that you can feel
and touch. Sofware is the programs that are running on the hardware. Example are given below.

Every working computer consists at least of the following:
1) A processor
2) Memory to store the program
3) An output device
4) A program running
Most computers also have
5) An input device, to either change the program running, enter new data to be processed, or control the
processes running.

Let's take a look of things we can find in a computer system:

Table: hardware elements

Imperative Programming: Lecture T-2

Mouse input device to control the processes of the
computer

CPU processor
Central Processing Unit
is what is doing all the work.
Calculating, controlling data flow, etc.

Joystick input device input data to a game

Keyboard input device to give instructions to the computer
or enter data to be processed

Memory storage store program and data to be processed

Monitor output
device show results of processes

Printer output
device show results of processes

Modem input/output
MOdulator-DEModulator
communicate with other computers
over a telephone line

Imperative Programming: Lecture T-2

Network card input/output communicate with other computers
over a high bandwidth network

Harddisk/floppy
disk storage

store data or programs in non-volatile
format (data will stay when
the computer is switched off)

CD-ROM input load programs or data into the
computer memory

Sound card output play music or other sounds

Scanner input scan an image

Physical and logical layers of a computer

At the lowest level we can determine the level of Physics. Electrons (and holes) are responsible for the
electrical conduction of the material. The materials used in computers is called semiconductors, meaning
that they have a resistance in-between metals (like copper and gold) and isolators (like glass and plastic).

At the next level we find Electronics. Electronics
connect materials with different properties and the
resulting electronic components show remarkable and
usefull behavior. Note the diode which conducts current
only in one direction, or the transistor, whose
conductivity is controlled by an external voltage.

The picture
shows the first
transistor, as
invented at
Bell Labs in
1947.

Imperative Programming: Lecture T-2

Next we find the level of Digital Electronics. This involves so-called gates: OR, NOR, AND, NAND,
XOR, to name a few. Such gates are made up of basic electronic components like transistors. Gates are
the cornerstone of digital computers. We have to remember that all calculations of computers at the end
are done on this level. When we add 2+2, somewhere in the computer gates are switching and are
performing calculation like "1 OR 1 = 1".
Another important component of digital electronics is memory. These are also made up of transistors (and
capacitors in case of dynamic RAM) and can temporarily store information.

The next level is that of Integrated Circuits. In
these circuits, millions and millions of gates are
connected and this allows for complex programs
to run.
In the years since the first integrated circuits, the
number of transistors on a single IC has been
doubling every two years, approximately. This is
calles Moore's law and is still avlid, although the
physical limits seem to be in sight. See the picture
on the left.

To make a popular comparison. If the same
industrial advance had been made in the car
industry, a modern car would be able to run at 5
million km/h, consume 1 drop of petrol per
100.000 km and could seat about 10 thousand
people

.

At the next level the real programming starts. We start with binary programs, or (in readable format)
Micro-assembler. This is directly programming the processor: put address xxx in address register, enable
addressing lines, wait xx ns, add register X to register Y, etc. ("registers" are small memory units inside
the processor)

The next level consists of Machine language. This is directly programming the processor with binary
code like
 101000100000101000
which might mean: put the contents of address 0000101000 into the A register. Such code is nearly
impossible for humans to read. Therefore, very rapidly macro-assembler were invented. When a program
is executed, this code is (without further translation) directly put in the memory and executed. Files with
extensions like ".exe" and ".com" in MS-DOS and Windows are of this type.

For the next level, which already starts looking like real programming, we have Macro-assembler. In
this level we instruct the processor to execute the small programs written in microassembler. These are
equal to machine language, but in a more readable format and with the first hints of higher level
programming (for instance "labels" and "variables"). In macro-assembler we write commands like
 ADDA $2050
which might mean "add the contents of memory at address $2050 to register A" and which is translated

Imperative Programming: Lecture T-2

by the assembler into machine code.

At the next level we finally have our modern Programming languages. These languages are often called
"fourth generation languages", because they evolved from earlier languages such as assembler, etc. Many
of these programming languages were invented during the 1960s and and 1970s. For every application
there exists a programming language. In 1995 there existed about 2500 different programming languages.
(for people interested, see http://cui_www.unige.ch/langlist).
For professional programmers there is C and C++, for simple applications, there is BASIC. For
educational purposes PASCAL was invented, especially to teach the ideas of programming.
Examples:

 BASIC IF A=20 THEN PRINT"Hello World"
 PASCAL if (a=20) then writeln('Hello World');
 C if (a==20) printf("Hello world\n");
 FORTRAN IF (A .EQ. 20) PRINT ,'Hello World'

Lately new generations of programming languages are evolving. All of them involve the concept of
Object-oriented programming, a concept that we will not use in our lectures, but has become
indispensible in modern program environments. We might call this "fifth generation languages"

Modern programming languages are very flexible. We can write a variety of applications in the
languages. We might, for instance, write a program that simulates the workings of a diode, or calculate a
transistor at the physical level. Then we are full-circle; we will use the computer to make the basic
components - and thus the computer - better and faster.
Also, bear in mind, that if we write in Pascal
 writeln('Hello world');
and run the program, we are, in fact, controlling the flow of electrons on the lowest levels. This might
give you a good feeling of control

Compilers

As said before, modern programming langauges have to be translated from aform that the user
understands to a form that the computer understands. When we write
 writeln('Benfica - Sporting 3 - 0');
This has to be translated into
 MOVAI $0102 ; load 'B' into A register
 MOVAO $1245 ; move contents of register to Video Card
or, one level deeper
 0011011100011111110001111010001111
For this purpose exist compilers. They translate text that is readible to humans into something that is
executable for the computer. When we start with a file containing our program myprogram.pas, we
translate this with a compiler which will generate a file called
 myprogram.exe
which we can call with
 myprogram
and the following output will appear on the screen when everything goes correct
 Benfica - Sporting 3 - 0

In most modern version of a programming language we will work within a so-called IDE (integarted
development environment), which means that we can write the program and with a single keypress we
can compile the program, see the errors of our writing, and, in case there were no errors during
compilation, execute the program and see the results. Such environments greatly speed up the

Imperative Programming: Lecture T-2

development of software, but we should not forget that in fact a compiler is translating the program for us.

We will discuss compilers later and the use of compilers will also be explained in the practical
lessons.

Operating Systems

Operating systems are programs that are constantly running on our computer and are interpreting the
commands we give it. For instance, when we want to 'run' our program, we can write its name or click on
its icon, or something like that. The operating system will then
 1) load our program from harddisk into memory
 2) start executing it
When our program is finished it is normally removed from the memory again, but the operating system
will continue running, waiting for our next instruction. In fact, a computer left alone is doing nothing but
checking if we already typed something or clicked on something. What a waste of energy

The most famous operating system was probably MS-DOS by Microsoft.
This was a command-line operating system, meaning that you had to
type-in your instructions to the computer using a keyboard. For example

 DIR C:\
Later, a graphical interface was added to MS-DOS and it was called Windows. Underlying it, was still the
same MS-DOS command line operating system, but our mouse-clicks on icons and objects was translated
into commands. We might click on a 'folder' and see its contents. Clicking on a folder would then be
equal to typing DIR, with the output presented in graphical format.
Over the years, Windows has become more advanced and nowadays it is a multitasking operating system
(meaning that more than one program can run at the same time) and most people in the world are using it.
Because of the monopoly that Microsoft has, the 27% of the shares that co-founder Bill Gates has in this
company had a value of $20 billion (20.000.000.000 dolars) in 1995. By 2000 it had risen to $65 billion.
Note, this is about $10 for every person on earth, be it an American or a Chinese in whatever remote
village in China.
Alternatives to Windows are Unix/Linux, which has the advantage that it is for free and MacOS, which

runs on Macintosh computer, as described above.

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test. Note that
this NOT the form the final test takes!

Peter Stallinga, Universidade do Algarve, 6 fevereiro 2002

Imperative Programming: Lecture T-3

Lecture 3: Units of Information / Memory

As described in the previous lesson, the memory is an essential part of the computer. It stores

the program
the data the program is working with

Note: The idea to seperate the program form the data it is
working on and to seperate the hardware from the
software (or the "the machine" and the "program") comes
from Von Neumann. He designed the first electronic
computer capable of running a flexible program
(1940-1952). All modern computers are Von Neumann
computers.
Click here if you want to know more about Von Neumann.

Before writing programs, it is useful to take a closer look at the memory.

Memory is filled with information. This information can either be program code or data. Let's take a look
at some types of information.

BIT

The smallest unit of information is a bit. One bit can contain inforamtion of the type "TRUE or FALSE".
For example, it can contain the information
 "Did the student pay his tuition fees (propinas), yes or no?",
 "Can the student go to the frequencia, yes or no?",
 "Is x larger than y?".
We have to remember that, at the electronics level, the computer is calculating with these bits of
information. In the previous lecture we have seen how digital electronic components ("AND gates", etc.)
handle these bits of information. For these electronic components, there are two levels: 0 V and +5 V (or
any pair of discrete voltage levels). In our language, we can call it 'TRUE' and 'FALSE', or '1' and '0', or
'green' and 'red', or whatever pair of symbolic names we want to give it.
Because a bit of information can be only one of two possible values, we call it a binary unit. Since all
units of inforamtion are derived from these bits, we call a computer a binary calculator. Although
computers can easily be constructed using other basic untis of information (for instance ternary or
quaternary), all modern computers are of the type binary calculators.

electronic levels
of AND gates 0 V +5 V

binary 0 1

logical FALSE TRUE

bicolor green red

These ideas can be mixed at our wish. For example, PASCAL uses the ideas 'TRUE' and 'FALSE' for

Imperative Programming: Lecture T-3

logical calculations, while C uses '1' and '0'.

NIBBLE

The next unit of information is a nibble. This is a set of 4 bits. In these 4 bits we can for instance store
information of the type 0..9. Nibbles are therefore used in many digital displays, such as alarm clocks etc,
where each digit is stored in a nibble. We call this binary-coded-decimal (BCD):

 binary BCD
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

 binary BCD
1000 8
1001 9
1010 not used
1011 not used
1100 not used
1101 not used
1110 not used
1111 not used

 example of an LED display

Looking at the table we see that when the binary code is
 abcd
the decimal code is
 a*8 + b*4 + c*2 + d
or, more general:
 a*23 + b*22 + c*2 + d
This, we will see, is always the relation between binary and decimal numbers.

Note also that some of the possible combinations of bits are not used in BCD. A way to represent these
four bits of information with all possbile combinations used is the hexadecimal system. The bit
combinations from '1010' to '1111' are then represented by the letters A to F. In a hexadecinal
representation we get the following translation table:

 binary hexa-
 decimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

 binary hexa-
 decimal

1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

and we see that all 16 binary combinations have a counterpart in the hexadecimal system The
hexadecimal system is widely used in computer technology.
As an example: 21F in the hexadecimal system is equal to 2*162 + 1*161 + 15*160 = 2*256 + 1*16 +

Imperative Programming: Lecture T-3

15*1 = 543.

BYTE

The next unit of information is a byte. A byte is a combination of two nibbles and thus of 8 bits. In this
we can store numbers from 0..255 because

00000000 = 0*27 + 0*26 + 0*25 + 0*24 + 0*23 +
0*22 + 0*21 + 0*20 = 0

11111111 = 1*27 + 1*26 + 1*25 + 1*24 + 1*23 +
1*22 + 1*21 + 1*20 =
 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =
 = 255

another example:
11011001 = 1*27 + 1*26 + 0*25 + 1*24 + 1*23 +
0*22 + 0*21 + 1*20 =
 = 128 + 64 + 0 + 16 + 8 + 0 + 0 + 1 =
 = 217

Alternatively, a byte can represent all the letters of the alphabet, in uppercase ('A' .. 'Z') and lowercase ('a'
.. 'z'), plus all the digits '0' .. '9', some special letters like '{', '}', '(', ')', space, etc, and other things like
control codes. The most often used way to do this is ASCII (American Standard Code of Information
Interchange) in which, for example 'A' is 65 (decimal), or 01000001 (binary), or 41 (hexadecimal). Other
examples are:

binary decimal hexadecimal ASCII
 01000001 65 41 'A'
 01000010 66 42 'B'
 01100001 97 61 'a'
 00010000 32 20 ' '

Memory

In many computers, the byte is the smallest unit that can
be 'addressed'. To understand this idea, we have to look at
how the memory is organized. Imagine the memory as a
(very long) street with houses. Each house has an address.
If we want to put something in a house or take something
out of it, we have to specify the address of the house.
In a computer, the memory takes the place of the street
and the byte takes the place of the house. In each 'house'
live 8 bits, or a byte.

Imperative Programming: Lecture T-3

As we will se later, some 'people' (units) are very big
and occupy two or even more adjacent houses. These 'people' are called 'integers', 'words', 'reals', etc.
Still, addresses are in most computers 1 byte and thus 8 bits apart.
(Note [not needed to study]: especially in supercomputers the distance between two addresses can be
much longer than a byte, for example 63 bits instead of 8. We call this distance the 'word length' of a
computer.)

Note that all three units described until now are also units of food in English. Bit, Nibble, Byte. Further
units disband this idea.

Memory Size of Computers

 Very often you read in the advertisement things like:
 Computer, with 1.7 GHz processor, 256 MB RAM, 40 GB harddisk, 1.4 MB floppy

The 1.7 GHz specifies the speed of the CPU (the central processing unit). 1.7 GHz thus means that it can
do 1.7 million simple instructions per second.
(Since most commands given to the processor take more than one simple instruction, the actual number of
commands per second is lower. For example an addition of two floating point number might consist of 1)
loading the first number from memory, 2) loading the second number from memory, 3) adding the number
(possibly in several steps), 4) saving the result to memory. Nevertheless, the overall speed of a computer
is largely determined by the speed of the processor and the speed with which it can load the data from
memory.)

The other numbers determine the size of the memory of the computer (RAM = Random-access memory),
the harddisk and the floppy disk repectively, in number of bytes (B). To give an idea what these numbers
mean, let's analyze them more carefully:

BYTE: The basic unit to describe memory is the byte (B). As said before, a byte is large enough to
contain a single letter, or a number from 0 .. 255.

KILOBYTE: 1024 bytes is called a kilobyte (kB). In science, 'kilo' means exactly 1000, a nice round
number in the decimal system. For computers 'kilo' means a little more, 1024. This is based on the fact
that 1024 is exactly 210, or in binary 10000000000, a nice round number.
To give an idea of how much a kilobyte is: A page of A4 with text is approximately 4 kB.

MEGABYTE: 1024 kilobytes is a megabyte (MB). This is then equal to
1024 x 1024 bytes, or 1048476 bytes.
To give an idea how much a megabyte is: 250 pages of text, or, let's say
a book.
Most floppies are 1.4 MB and this is thus enough to store a book of
about 350 pages.
(without images etc.)

GIGABYTE: 1024 megabytes is a gigabyte (GB).
This is enough to store a nice library of a thousand
books.
Most CD-ROMs have 650 MB (0.65 GB), enough
to store a small library

Imperative Programming: Lecture T-3

Modern harddisks have about 40 GB space. On this we can therefore store a
large library, some 40.000 books.

TERABYTE: 1024 gigabytes is a terabyte. Although disks of this size do not exist yet, some companies
have computer systems with many disks totalling disk space in the order of terabytes. This is enough to
store all the books in the world.

To give an idea about the total amount of diskspace on the world: there exist
about 500 million computer owners in the world. On the average, each has a
hardisk of about 10 GB. That makes a total of approximately
5.000.000.000.000.000.000 bytes. It would take a person reading 10 books per
day more than a billion years to complete reading all the information!

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test. Note that
this NOT the form the final test takes!

Peter Stallinga, Universidade do Algarve, 13 fevereiro 2002

Imperative Programming: Lecture T-4

Lecture 4: Introduction to Programming

Any program is nothing more than a set of instructions for the computer. The computer will execute the
command one after the other, in principle in the order as they are written (apart from so-called branching
instructions (if, if..else, switch) that we will see later). It will do nothing more and nothing less than what
we tell it to do.

Moreover, we have to give (write) the instruction with a lot of care. The computer understands only the
thing we taught it to understand

Software engineering

Creating programs always consists of the following steps:

Think! Study and analyze the problem. Collect information. Come up
with a possible solution. Don't touch that keyboard yet! Use pen and
paper.

1.

Write a program. Use whatever editor to enter your program2.
Eliminate the errors from the program. This is called "debugging".
There are several types of errors:

3.

compile-time errors. Writing errors (For example when we write
prinntf instead of printf). Easy to elliminate; the compiler is going to
help us by telling us something like "type-mismatch error in line 34"
programmatic errors. For example forgetting to initialize (setting to a
certain value) our variables. This can also cause so-called "run-time
errors", for example "division by zero error".
logical errors (for example, we do not know that the Pythagoras rule is
a2 + b2 = c2). The program will run without generating errors, but the
result will not be what we wanted.

Analyze the result. Is this what you wanted? Maybe the program wrote "The square-root of 9 is 4"
Clearly not what we wanted.

4.

If necessary, go to step 3, 2 or even 1.5.

Spending some more time on point 1 can often save a lot of time in the other steps.
The First Computer Bug

Grace Murray Hopper, working in a temporary World War I
building at Harvard University on the Mark II computer,
found the first computer bug beaten to death in the jaws of a
relay. She glued it into the logbook of the computer and
thereafter when the machine stops (frequently) they tell
Howard Aiken that they are "debugging" the computer. The
very first bug still exists in the National Museum of American
History of the Smithsonian Institution. Edison had used the
word bug and the concept of debugging previously but this

Imperative Programming: Lecture T-4

was probably the first verification that the concept applied to
computers. (copied from http://www./firstcomputerbug.html)

The C programming language

C was invented in Bell Labs in 1971-1973. It was an evolution of the language B, which in turn was
based on BCPL. In 1983 the language was standardized and that became the official version. It is
probably the most used programming language in the world.
The evolution of C went hand-in-hand with the evolution of the UNIX operating system which we are
going to use in our lectures (in the form of Linux, which is a graphical variant of UNIX). In fact, UNIX
itself was written in C.

A program is a sequence of instructions, or statements which inform the computer of a specific task we
want it to do.
Most modern program languages are in a very readible format, close to English, making it easy for
humans to read and write programs. This in contrast to earlier programming languages, which were closer
to things the computer understand. See for example the assembler language (aula 2).

A very simple C program:

#include <stdio.h>

main()
{
 printf("Hello World\n");
}

Let's take a look at this program.

Every line that starts with a hash # are instructions for the compiler or linker rather than command
that will be executed at run-time. #include <stdio.h> means that the library stdio ("standard
input-output") has to be fetched by the compiler in order to understand what is coming. We will use
the command printf which is part of the stdio library.
After this we can write our own procedures and functions (see the lecture on modular
programming).
"main" is a special function. The first instruction of this function is always the first instruction to be
executed. For the first couple of weeks we will only write instructions in this function.
Therefore, the instruction printf("HellowWorld\n") is executed first and since it is the only
instruction this also finishes the program. The instruction writes the text Hello World on the screen
and goes to the next line (\n).

Reserved keywords in ANSI C

auto
break
case
char
continue
default

float
for
goto
if
int
long

static
struct
switch
typedef
union
unsigned

Imperative Programming: Lecture T-4

do
double
else
extern

register
return
short
sizeof()

void
while

Note that there is only one function defined in the C language, namely sizeof(). All the other functions
are described in so-called libraries. For example, printf can be found in the libary stdio. We therefore
have to put the compiler directive #include <stdio.h> in the beginning of our code.

Identifiers

Identifiers, as the name already says, are used for identifying things. This can be names of functions and
names of variables and. This we will see in later aulas. Like in most languages, names of identifiers have
some restrictions:

They should start with a letter; "20hours" is not allowed.
Followed by any combination of letters, digits or the underscore character "_".
Spaces are not allowed, nor are characters like "(", "{", "[", "%", "#", "?", etc, except "_". The
reason why this is so is that these characters are used for other things in C. They are called
reserved characters.

{ } [] () - = + / ? < > . , ; : ' " ! @ # $ % ^ & * ~ ` \ |

Identifiers cannot be equal to reserved keywords (and also better to avoid predefined functions) of
C, such as words like "int" or "main". Note that identifiers like "int1", "int_" or "Int" are allowed,
although it is advised to avoid such confusing names. Note: In many programming environments,
we will notice when we are using a reserved keyword because they will change color when we type
them in.
Choose your identifiers well. When a variable is used for storing interest rates, call it, for example
"interest" and not "variable1". Although it is not an error to give it the name "variable1", it is much
more intelligent to give it a more meaningful name. This helps other people to understand your
program (or yourself when you come back to the program after a long time).
The minimum length of identifiers is 1, the maximum length 255. Make use of this possibility of
long names, but also remember that also long names can make the program unreadable. Choose a
"golden middle". Which of the following do you think is best:

 r = r + a;
 money = money + interest;
 themoneyintheaccountofpersonwithnameJohnson =
themoneyintheaccountofpersonwithnameJohnson +
thecurrentinterestrateatthetimeofthiswriting;
They are case sensitive, "i" is not equal to "I", etc. To make programs more readable, follow a
convention all through your program(s). The most often used convention is lowercase for variables
and UPPERCASE for CONSTANTS.

Structured programming

The most important thing in programming is to write clear, logical and
structured programs.

Use meaningful names for variables, procedures and functions.
Use indentation. Compare the following two programs:

Imperative Programming: Lecture T-4

 #include <stdio.h> main() {printf("Hello world!\n")}
and
 #include <stdio.h>

 main()
 {
 printf("Hello world!\n")
 }
Both programs do exactly the same, but the second one is much more readible. The difference is

Only put one statement per line.
Use indent. Put (2) extra spaces in the beginning of the line every time we are one level
"deeper" in the structures.
Seperate blocks of text (functions and procedures) with blank lines.

Avoid the use of "goto" statements. With these statements, the program rapidly starts looking like
spaghetti. Whereas in BASIC (Beginner's All-purpose Symbolic Instruction Code) the use of the
GOTO statement is nearly unavoidable, in any itself-respecting language, the goto statement should
be avoided.
Comment. Since C is nearly like English, the program itself should be self-explanatory. Still, in
places where the idea of the program might not be clear to the programmer, use comments. In C
comments are placed after // on a single line, or between /* and */ for multi-line comment.
Use functions wherever it makes the text more organized. If at many different places the program
has to do basically the same thing (for instance reading a line of text form a file), consider putting it
in a procedure or function (for example FileReadLn(). This will make the program more readable,
more efficient and shorter.

 main(l
 ,a,n,d)char**a;{
 for(d=atoi(a[1])/10*80-
 atoi(a[2])/5-596;n="@NKA\
CLCCGZAAQBEAADAFaISADJABBA^\
SNLGAQABDAXIMBAACTBATAHDBAN\
ZcEMMCCCCAAhEIJFAEAAABAfHJE\
TBdFLDAANEfDNBPHdBcBBBEA_AL\
 H E L L O, W O R L D! "
 [l++-3];)for(;n-->64;)
 putchar(!d+++33^
 l&1);}

The program above shows an example of how NOT to program. Do you manage to predict what the
program does? Don't worry, neither do the specialists. If you want to know what will be the output of this
program, click here.
(program copied from http://www.ioccc.org/)

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test. Note that
this NOT the form the final test takes!

Peter Stallinga. Universidade do Algarve, 14 outubro 2002

Imperative Programming: Lecture T-5

Lecture 5: Variables

Types of Variables

Variables store values and information.
They allow programs to perform
calculations and store the results for later
use. Imagine a variable as a box that can
contain information. When we want to
know this information, we open the box
and read the value. At the end, we put the
information back in the box and leave it
there, until we need the information
again.

For ease of identification, to avoid
confusion, every box must have a name,
an identifier (see aula 4).

The type of the box defines the size of the
box and the type of information that can
be found in there. Variables come in
many sizes and flavours.

Variables can store numbers, names, texts, etc. In modern versions of C there are many types of basic
variables. The exact implementation of the types of variables depends a little on the compiler. For the
Borland C compiler we have:

 group variable type range size it occupies in memory
II unsigned char 0 .. 255 8 bit = 1 byte
II char -128 .. 127 8 bit = 1 byte
II int −32 768 .. 32 767 16 bit = 2 bytes
II unsigned int 0 .. 65 535 16 bit = 2 bytes
II long −2 147 483 648 .. 2 147 483 647 32 bit = 4 bytes
II unsigned long 0 .. 4 294 967 295 32 bit = 4 bytes
III float −3.4E−38 .. 3.4E38 32 bit = 4 bytes
III double −1.7E−324 .. 1.7E308 64 bit = 8 bytes
III long double −3.4E−4932 .. 1.1E4932 80 bit = 10 bytes
IV char #0 .. #255 ASCII 8 bit = 1 byte

Notes:

The convention of writing exponents in the scientific notation: 2.9E−39 means 2.9 x 10−39,

Imperative Programming: Lecture T-5

1.7E308 means 1.7 x 10308, etc.
In C there is no variable type for boolean information (bit). Instead, where boolean information is
needed, this is implemented by the use of integers, where "false" is equal to 0 and all the other
values are "true".
char is used (or can be used) both for ASCII information (text) as for small short integer numbers
(0..255 or -128..127)

I Boolean is used to store and manipulate information of the type true-or-false or yes/no. As we
have seen in lecture 3, this is one bit of information. In C this type of variable does not exist. Instead it is
emulated with int's, where 'false' is equal to 0 and any other number is equalto 'true'.

II int, unsigned int, and long and char and unsigned char all store values of complete numbers. This is

used for things that can be counted; number of people in the room, number of doors of a car,
number of phonecalls somebody made, ano lectivo, day of the month, etc. Unsigned char and int only
store positive numbers, while int and long can store both positive and negative numbers, at the cost of
limited maximum value. The char occupies the least memory, only 8 bits, but the range of values it can
take is therefore very limited, only 256 different values. If we need to store larger numbers, we have to
use int. If we want to store even larger numbers and want positive and negative numbers we use long.
Note: since a char has 8 bits, it can store 28 = 256 different numbers: 0 .. 255 or -128..127. The same
calculation we can make for the 16-bit units int and unsigned int: 216 = 65536, numbers from 0 .. 65535
for unsigned int, and -32768 .. 32767 for int. Remember the calculations of lecture 3.

III Float, double and long double are examples of variables that can store floating point numbers (for

example 3.1415926535). These are used for things that are not countable, like the length of
the car, the time elapsed between events, the height of a building, the square-root of 3, etc. The smallest is
float, it occupies only 4 bytes, at the cost of smaller precision in our calculations. The best is long
double, with 80 bits (10 bytes), the calculations will have very high precision, but the calculations will be
slower and it occupies more space in memory. A good middle way is the double.

IV The last type is used for storing text. Char is used for a single character of ASCII code. Since char
can be used to store information of the type integer numbers as well as ASCII characters, we have to be
very careful to not make mistakes.

Later we will learn how we can define our own type of variables, now let's take a look at how we use
them in C

Imperative Programming: Lecture T-5

Variables: Declaration!

In most modern compiled languages, all variables that we will use have to be defined first. This is called
declaration. To be more precise, declaration means reserving space in memory and associating a name to
it, so that later we can use the name instead of the memory address when we want to retrieve the
information.
In C we declare variables by writing the name of the variable preceded by the type of the variable. For
example
 int i;
The place to do that is in the beginning of the function (main), before the first real instructions For
example:

main()
{
 int i;
 float f;
 long li;

 instruction1;
 instruction2;
}

Everytime when the program runs and an instruction like int i; is encountered,
space is reserved in memory and the address of this space is remembered for later
reference when we need to store information in this box or retrieve a value from it.
This space is released at the end of the function (or program in case of main).
For the experts: Variables are placed on the stack and stay there until the scope of the
variables has expired.

If we want to define more variables of the same type, we can do that on a single line with the variables
separated by commas, although it is nor prohibited to use several lines to define different variables of the
same type:

main()
{
 int i, j, k;
 float f;
 float g;
 int n;

 instruction1;
 instruction2;
}
Forgetting to declare variables will cause a compiler error.

Problems with variables I: Type mixing

Always be careful when using diferent types of values in calculations. Consider the following code

main()

Imperative Programming: Lecture T-5

{
 int i, j;
 float f;

 i = 1;
 j = 3;
 f = i/j;
 printf("%f", f);
}
What will be the value of f at the end? in other words, what will be the output of the program?
NOT 0.3333 as we might expect. Instead the value of f will be 0.0000. This is because the division
calculation is done with int's and in integer calculation 1 divided by 3 is 0. This is then attributed to f.
To avoid this we can

 * force the type of the value in the calculations. Thisis called "type casting". For example:
 f = (float) i/ (float) j;

 * Where we are calculating with constants we can force the type by including the seemingly redundant
floating point part:
 f = 1.0 / 3.0;
 instead of
 f = 1 / 3;

Problems with variables II: Overflow

Consider the following program

main()
{
 int i, j, k;

 i = 20000;
 j = 20000;
 k = i + j;
 printf("%d", k);
}
Again, what will be the output of the program?. Naively we might think 40000, but k is of the type int and
int's only go up to 32767. What is done with the rest? What happens is that the overflowing part "reenters
at the bottom of the range". In this case we will get -25536. An overflow can occur when we add two
numbers with limited range. An underflow can occur when we substract 2 numbers.
This is easier shown with a byte-sized variable (a byte has 8 bits and a range from 0 to 255 and is called
unsigned char in C):

i 130 = 10000010
j 130 = 10000010
i+j (260)= 100000100

What happens is that the 9th bit in the above equation is ignored and the result will be binary 00000100
which is equal to 4 in the decimal system. Therefore, for byte calculation 130 + 130 = 4.

What can be done to prevent this

Always use variable types of sizes large enough to store the results of any possible outcome of the
calculations. In the above example we should use (at least) int's. In the first example we should use

Imperative Programming: Lecture T-5

long int's.
Some languages have the option to check for this at run time. This is called "range checking",
which will also check for "array index out of bounds" as we will discuss later in the lecture about
arrays.

Problems with variables III: Initialization

Declaring a variable does not assign a value to the variable, it only reserves space for it in memory!
main()
{
 int day;

 printf("Today is day %d\n", day);
}
In the program above, the output might be

Today is day 23741

When a computer is switched on, the memory is normally filled with 0's, but after a while, after many
programs have been using the memory and left there their garbage there, the contents of a memory
address is unpredictable. To ensure that we are working with well defined values we always must assign a
value to each variable. In the next lecture we will learn how we can do that with assignment instructions
in the program. Here it suffices to say that: "don't assume that your variables are set to 0 in the
beginning".
Note: In many programming languages it is possible to assign a value to a variable at the moment of
declaration. To do that in C we can use
 int day = 0;

printf
The instruction printf is one of the most useful instructions in C and is used for
for showing information on the screen: text, numbers, values of variables, etc.
Nearly every program has somewhere a printf statement. We have already
seen some example above and skipped the discussion about how this functions
works until now.

printf is part of the standard-input-output library (stdio.h). The output is formatted, which means that
we can specify how exactly the information should be shown (how much space it should take onthe
screen, how many significant digits should be shown for floats, etc.). The format is always the first
argument of the function. The next argument(s) are the information to be shown, separated by commas.
 printf("%d", i);
will show the value of the integer i
 3
for every piece of information we have to specify the format:
 printf("%d %d", i, j);
 3 5
other format specifiers that are interesting for us:

Imperative Programming: Lecture T-5

%d
%i
%u
%x
%f

%e
%c
%s

integer with sign
integer with sign
integer without sign
hexadecimal
float (31.2000)
for example %10.3f shows the float with 10 spaces on screen and 3 decimal cases
float with scientific notation (3.12E1)
ASCII character
string

Note that we can also directly write text in the format:
 printf("Hello%d World", i);
which will give as output (when i=3)
 Hello3 World
There are special characters that we can use to control the position of the output. There are written with
an \. The most important is:

\n goto to the beginning of the next line

For example
 printf("Hello\n%d World", i);
will give as output (when i=3)
 Hello
 3 World

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test. Note that
this NOT the form the final test takes!

Peter Stallinga. Universidade do Algarve, 22 October 2002

Imperative Programming: Lecture T-6

Lecture 6: Assignment, scanf and
calculations

Assignment

In the previous lecture (aula 5) we have seen how we can define variables. Now we will take a look at
how the value of a variable can be assigned a value

Giving a new value to a variable is called assignment. In C this is done with the operator

On the left side op this operator we put the variable, on the right side we put the new value or expression
that will produce a value of the same type as the variable. Examples:

 a = 3.0;
 b = 3.0*a;
 c = cos(t);

wrong (assuming a is of type float):

 1.0 = a;
 a = TRUE;
 a = 1;

In reality, for C the last example was correct. C knows what we want and helps us by converting the
integer 1 to the real 1.0. In any case, it is bad practice to mix floats with ints and we'd better write: a =
1.0;

The symbol = should be distinguished from the normal mathematical symbol =. At this stage, it is
interesting to make a comparison between the mathematical symbol = and the assigment symbol in
programming languages (= in C). As an example take the following mathematical equation
 a = a + 1
This, as we all know, does not have a solution for a. (In comparison, another example: a = a2 − 2, has a
solution, namely a = 2).
In programming languages, however, we should read the equation differently:
 a = a + 1;
means

Imperative Programming: Lecture T-6

 (the new value of a) (will be) (the old value of a) (plus 1)
Or, in other words: first the value of a is loaded from memory, then 1 is added to it, and finally the result
is put back in memory. This is fundamentally different from the mathematical equation. In most other
modern languages the symbol = is used, which is confusing, especially for the beginning programmer.
That is why the student is advised to pronounce the assigment symbol as 'becomes' or 'will be' instead of
'is' or 'equals'.

The symbol = should also be distinguished from the comparison symbol =. For example a=b ? Later, we
will learn how to make comparisons (in the lecture on "if .. then" and "boolean algebra"), for which we
will use the == symbol.

 To summarize, the = symbol is
 NOT part of a comparison ("a is equal to b?")
 NOT part of an equation ("a2 = 2a -1")
 it IS an assignment ("a takes the value of b")

Example

The following shows an example of a program using assignment statements and the use of variables and
constants. The right side shows the value of the variables after each line

value of a
after executing the line

value of b
after executing the line

main()
{
 float a;
 float b;
 float c = 4.3;

 a = 1.0;
 b = c;
 a = a + b + c;
}

undefined
1.0
1.0
9.6

undefined
undefined

4.3
4.3

Formatted input: scanf
In the previous lectures we have learned how to show the
results of our calculations on the screen. With printf we can
make our program have output. In many cases, we would also
like our program to have input. The user enters his name, or
enters numbers that our program has to process. Or even more
simple, we want that the users can control the program. For
example, we want that the user can stop the program with a
simple stroke of the escape key.
C: With scanf we can get
information from the
keyboard. They can read
values and characters

Imperative Programming: Lecture T-6

from the keyboard and
directly store them into
specified variables. The
general form the
instructions take is

scanf("format
decription(s)",

&var1, &var2, ...);

Note the symbol &. This means "the address of ..." We have to give the address of the variable(s) to the
function scanf. As we will see later, giving the address of a variable is equal to "passing by reference"
and this allows for changes of the value of the variable by the function. For the moment it suffices to say
that we have to give the address of the variables in scanf. In the analogy of the boxes we could see it as
giving the box to the function who then fills it with a value.

The format descriptions are the same as for the output instruction printf. For example %d for int's, etc.
Note that the variables to be read do not have to be of the same type.

As an example

 // lines starting with these // are cooment
 // always when we use input or output
 // we have to include the standard-I/O library:
 #include <stdio.h>

 main()
 {

 // don't forget to declare the variables we will use
 int n1, n2: integer;

 printf("Please enter two numbers separated by a space\n");
 scanf("%d", &n1);
 scanf("%d", &n2);
 printf("n1 = %d n2 = %d", n1, n2);
 }

When run, the program will display the message
 Please, enter two numbers separated by a space
The user is expected to type the two numbers
 128 31<return>
(note the conventions we will use in this text: things the user will enter will appear in green italics, and
<return> signifies pressing the return key).
after which the program shows
 n1 = 128 n2 = 31

Operations, operators and operands

After learning how to assign values above, we can now take a look how to perform calculations with our
programs. The most basic operations are adding, subtracting dividing and multiplying:

 operator operation
+ addition

Imperative Programming: Lecture T-6

− subtraction
* multiplication
/ division

These four operators, when used for calculations, need two operands and are called binary operators. In
C one is placed on the left side and one on the right side. As examples:

 correct wrong
3 * a * a

a + b 3 a +

These expressions will result in values that can be assigned to variables as we have seen above. As an
example:

c = 3 * a;

Note again, on the left side of the assignment symbol = we have a variable and on the left side we put our
expression resulting in a new value for the variable.

In C There also exists unary operators which need only one operand:

 operator operation
++ increment
-- decrement
! negate (boolean algebra)
~ invert all bits of this int
- negate number
& address of ..

For example
 i++;
 --k;
Increases the value of i and decreases the value of k by 1 respectively. The operator can be placed before
or after the operator. The difference is the moment the variable is changing value, before execution of the
rest of the instruction (++i) or after (i++). For example

i = 1;
j = i++;

at the end
i is equal to 2
j is equal to 1

i = 1;
j = ++i;

at the end
i is equal to 2
j is equal to 2

The ! and ~ operators we will see later in the lecture on Boolean algebra.
The get-address operator & will be discussed in the lecture on pointers.
The unary - operator returns the negated number (floating point or integer).

Combinations of calculation and assignment.

Imperative Programming: Lecture T-6

C has thte peculiar and confusing possibility to use a calculation and assigment at the same time. For
example:
 c += a;
which is equivalent to
 c = c + a;
Any binary operator can be used in this form (*=, /=, +=, -=).
This is confusing and as such should be avoided. On the other hand, it can prevent errors. For example:
 matrixelements[i+2*k-offset][n+m-f] = matrixelements[i+2*k-offset][n+m+f] +
matrixelements[i+2*l+offset][n+m-f]
It is easy to make a typing mistake here. As a matter of fact, there is a mistake in there. Did you spot it?.
Simpler and more readable would be:
 matrixelements[i+2*k-offset][n+m-f] += matrixelements[i+2*l+offset][n+m-f]

Integer Math

The operators shown in the previous section are used for floating point calculations. For integer
calculations (used for types like byte, word, integer, longint, etc), the division operator works a little
different. Imagine the calculation of, for example, 7/3. As we have learned in primary school, this is equal
to 2 with a remainder of 1 to be divided by 3:

7 1
------ = 2 + ------

3 3

In C exist two operators / and % that reproduce these results. Example:

 expression result
 7 / 3 2

7 % 3 1

These replace the floating-point operator /. The other three operators (*, +, -) are the same for integer
numbers.

Priority

In case there is more than one operator in an expression, the normal rules of mathematics apply as to
which one is evaluated first. The multiplication and division operators have higher precedence. So, when
we write
 a = 1 + 3 * 2;
The result will be 7.
If we want to change the order at which the operators in the expression are evaluated, we can always
place parenthesis (and). So, for example
 a = (1 + 3) * 2;
will result in 8. Putting parenthesis never hurts!
 a = (1 + 3) - (4 + 5);

Imperative Programming: Lecture T-6

Examples

main()
 /* an example floating point calculation */
{
 double x, y, sum, diff, divis;

 printf("Give the value of the first variable x:\n");
 scanf("%f", &x);
 printf("Give the value of the second variable y:\n");
 scanf("%f", &y);
 sum = x + y;
 printf("The sum of %f and %f is %f\n", x, y, sum);
 diff = x - y;
 printf("The difference between %f and %f is %f\n", x, y, diff);
 divis = x / y;
 printf("%f divided by %f is %f\n", x, y, divis);
}

will produce, when running:

Give the value of the first variable x:
3.4
Give the value of the second variable y:
1.8
The sum of 3.4000 and 1.8000 is 5.2000
The difference between 3.4000 and 1.8000 is 1.6000
3.4000 divided by 1.8000 is 1.8889

main()
 /* an example integer calculation */
 /* note the different format specifiers in printf and scanf */
{
 int x, y, sum, diff, divis, divr;

 printf("Give the value of the first variable x:\n");
 scanf("%d", &x);
 printf("Give the value of the second variable y:\n");
 scanf("%d", &y);
 sum = x + y;
 printf("The sum of %d and %d is %d\n", x, y, sum);
 diff = x - y;
 printf("The difference between %d and %d is %d\n", x, y, diff);
 divis = x / y;
 divr = x % y;
 printf("%d divided by %d is %d plus %d/%d\n", x, y, divis, divr, y);
}

will produce, when running:

Give the value of the first variable x:
13
Give the value of the second variable y:
5

Imperative Programming: Lecture T-6

The sum of 13 and 5 is 18
The difference between 13 and 5 is 8
13 divided by 5 is 2 plus 3/5

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test. Note that
this is NOT the form the final test takes!

Peter Stallinga. Universidade do Algarve, 10 October 2002

Imperative Programming: Lecture T-7

Lecture 7: Branching I (if ... , if ... else ...)

Until now, all the instructions that were put
within the program were executed. Moreover,
they were executed exactly in the order that
they were placed. The first line of the
program was executed first, then the second,
then the third, and so on. This is not always
the case. With branching (a branch is a part
of a tree) we can control the flow of the
program.

Imagine a program that specifies a number
and the computer will calculate the
square-root of the number. Taking the
square-root of a negative number doesn't
make sense (unless you are working with
complex numbers, off course), so you would
like your program to generate an error and
stop when the user enters a negative number.
You want text like

 Negative numbers are not allowed!

to appear on the screen. Obviously, you do
not always want this text to appear on the
screen; in case the user enters a positive
number you just want the square-root to be
calculated and appear on the screen:

 The square-root of 5 is 2.23607

You would like to have some way to check
the number and depending on this result,
execute parts of the program.

Imperative Programming: Lecture T-7

if ...

The simplest way to have a control over the instructions that will be
executed is with the structure if .. The full syntax of the statement
is

 if condition
 instruction;

For condition we will substitute our condition and for
instruction we will put our instruction(s) that will be executed if
and only if the condition was true.
The condition is an expression that results in a value of type
boolean (see lecture 4). This can be a variable, for instance: were b
declared as int, the following is correct:
 if b instruction;
On the other hand, more common are conditions with expressions
that compare variables, such as
 if (x == y) instruction;
 if (x < y) instruction;

 comparison meaning
(a == b) a equal to b
(a != b) a not equal to b
(a < b) a smaller than b
(a > b) a larger than b
(a <= b) a smaller or equal to b
(a >= b) a larger or equal to b

Remember that if we want more than one instruction to be executed, we can group them with a { ... }
combination, so that for the if statement they appear as one.
 if (a == b)
 {
 instruction1;
 instruction2;
 }
In this case, both instruction1 and instruction2 will be executed when a is equal to b.

The normal execution of the program will resume after the block of instructions. In the following
example, instruction3 and instruction4 will be executed, regardless of the condition (a = b).

 if (a == b)
 {
 instruction1;
 instruction2;
 }
 instruction3;
 instruction4;

to be executed:
(a equal to b) (a not equal to b)

 instruction1
instruction2
instruction3
instruction4

 instruction3
instruction4

Note that here the analogy with branching in trees stops. In a tree, the branches never meet again; once
we are on a branch, it is never again possible to join the main trunk.

Imperative Programming: Lecture T-7

if ... else ...

If we also want to program to do things in case the condition is not
true we can do this with if ... else statement. The general form of
this instruction is

 if condition
 instructionA;
 else
 instructionB;

example:

if (a==b)
 {
 instruction1;
 instruction2;
 }
else
 {
 instruction3;
 instruction4;
 }
instruction5;
instruction6;

to be executed:
 (a equal to b) (a not equal to b)

 instruction1
instruction2
instruction5
instruction6

 instruction3
instruction4
instruction5
instruction6

Here a complete program that shows the use of branching to calculate the square-root of a number:

#include <stdio.h>

main()
{
 double x;
 double root;

 printf("Give a number");
 scanf("%f", &x);
 if (x<0)
 printf("Negative numbers are not allowed!\n");
 else
 {
 root = sqrt(x);
 printf("The square-root of %0.4f is %0.4f\n", x, root);
 }
 printf("Have a nice day\n");
}

Running the program; two examples:

 Give a number
 3.68
 The square-root of 3.6800 is 1.9183
 Have a nice day

 Give a number
 -3.68
 Negative numbers are not allowed!
 Have a nice day

Imperative Programming: Lecture T-7

Lecture 7: ... of roots and branches

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test. Note that
this is NOT the form the final test takes!

Peter Stallinga. Universidade do Algarve, 10 October 2002

Imperative Programming: Lecture T-8

Lecture 8: Branching II (switch) / Boolean
Algebra

Boolean Algebra

George Boole (1815-1864)

English mathematician. His work "The mathematical
analysis of logic" (1847) established the basis of modern
mathematical logic, and his boolean algebra can be used
in designing computers.
Boole's system is essentially two-valued. This can be
symbolized by
0 or 1 "binary representation"
TRUE or FALSE "truth representation"

0 V or 5 V "TTL electronics
(transistor-transistor logic)"

0 pC or 1 pC (pC
= pico-Coulomb)

 "the charge in a condensator, the
elementary memory unit in
(dynamic) RAM"

In the previous lecture (aula 7) we have seen how we can control the flow of the program by the
branching instructions if ... and if ... else We used conditions like (x<1.0). Now imagine we
apply this to calculate the square-root of (x2− 4). Clearly, this doesn't have an answer for x between −2
and +2. It would be nice to check if x is in this range or not. We could solve this with
 if (x<2)
 if (x>-2)
 printf("Error");
Much nicer would be if we could do this in a single condition. We will now see that exactly that is
possible
 if ((x<2) && (x>-2))
 printf("Error");
which means that both conditions (x<2 and x>−2), should be true for the complete condition to be true.
This is an example of a Boolean calculation
 condition3 = condition1 && condition2;
 if (condition3)
 instruction;

logical operators in C

&& and

|| or

Imperative Programming: Lecture T-8

Another important logical operation is XOR, although it is not implemented for Boolean calculation in C.
a XOR b means "a or b true, but not both!". We will use it later for integer logical operations. Others that
are not implemented include NAND and NOR which are only important at the electronic level and are not
very useful at the programming level.
Finally, there is the boolean negator !. It means taking the opposite; if a is false (0), !a is true (1), and vice
verse. Whereas && and || need two operands (for example a || b), ! needs only one (!a).
With these operators we can calculate all possible conditions we will need.

For completeness sake, here is the complete calculation tables ("truth tables") for the four Boolean
operators used in modern programming languages.

 Boolean operator C
AND &&

OR ||

XOR
NOT !

AND (&&)
a b a AND b

true true true
true false false

 false true false
 false false false

OR (||)
a b a OR b

true true true
true false true
false true true
 false false false

XOR
a b a XOR b

true true false
true false true
false true true
 false false false

NOT (!)
a NOT a

true false
 false true

Examples:

 a = 1;
 b = -2;
 c = 3;
 d = 3;

 if (a>0)
 printf("TRUE");
 else
 printf("FALSE");

(a>0) TRUE
(b>0) FALSE
(a>0) && (b>0) FALSE
(a>0) || (b>0) TRUE
!(a>0) FALSE
(! (a>0)) || (b>0) FALSE
(2==b) || (!(2==b)) TRUE

Boolean algebra for integers

We can also apply boolean algebra to complete numbers (char, int, long int, see aula 5). Although this
was not in the original idea of Boole, we can easily perform the same type of calculations with numbers,
as long as we do this "one bit at a time" and use the representations "1 = true" and "0 = false". To avoid
confusion, the symbols for operations on numbers are differents from the ones given above, namely "&"
for "AND", "|" for "OR", "^" for "XOR" and "~" for "NOT"

 operation C

Imperative Programming: Lecture T-8

 AND &

 OR |

 XOR ^

 NOT ~

With this convention, the truth tables for bit-wise boolean algebra become
AND (&)

 a b a AND b
1 1 1
1 0 0
 0 1 0
 0 0 0

OR (|)
 a b a OR b
1 1 1
1 0 1
0 1 1
 0 0 0

XOR (^)
 a b a XOR b
1 1 0
1 0 1
0 1 1
 0 0 0

NOT (~)
 a NOT a
1 0
0 1

49 = 0 0 1 1 0 0 0 1
24 = 0 0 0 1 1 0 0 0
 49 |
24 = 0 0 1 1 1 0 0 1 =

57

49 &
24 = 0 0 0 1 0 0 0 0 =

16
49 ^
24 = 0 0 1 0 1 0 0 1 =

41

~49 = 1 1 0 0 1 1 1 0 =
206

~24 = 1 1 1 0 0 1 1 1 =
231

As an example, imagine we want to calculate 49 OR 24
First we have to convert these numbers to the binary system (see
aula 3):
 49 = 1*32 + 1*16 + 0*8 + 0*4 + 0*2 + 1*1 = 110001
 24 = 0*32 + 1*16 + 1*8 + 0*4 + 0*2 + 0*1 = 011000
Then we do a bitwise calculation with the conventions as in the
table above (1 OR 1 = 1, 1 OR 0 = 1, 0 OR 1 = 1, 0 OR 0 = 0),
which will give 111001
This we then convert back to the decimal system and we get
 111001 = 1*32 + 1*16 + 1*8 + 0*4 + 0*2 + 1*1 = 57

In the table on the left, also the other operations with the numbers
49 and 24 are given.

Note the bit-wise inverter ~ depends on the size of the variable:
For a byte (unsigned char) ~49 = ~(00110001) = (11001110) = 128 + 64 + 8 + 4 + 2 = 206, while for an
unsigned int ~49 = ~(0000000000110001) = (1111111111001110) = 65486.

Multiple branching: switch
In the previous lecture (see aula 7) we have seen how to use the if ... instruction to branch between two
possible parts of the program. In some cases, we want that there are more than two possible ways the
program continues. For this we have the switch instruction.
Imagine the following program that asks from what year the student is:

 main()
 // outputs the lectures to follow on basis of year
 {

 int ano;

 printf("From what year are you?\n");
 scanf("%d", &ano);
 if (ano==1)
 printf("primeiro ano: MAT-1, CALC-1\n");
 else

Imperative Programming: Lecture T-8

 if (ano==2)
 printf("segundo ano: INF, LIN-ALG\n");
 else
 if (ano==3)
 printf("terceiro ano: ELEC, FYS\n");
 else
 if (ano==4)
 printf("quarto ano: QUI, MAT-2\n");
 else
 if (ano==5)
 printf("quinto ano: PROJECTO\n");
 else
 printf(">5: AINDA NAO ACABOU?\n");
 }

(Note the structure of the program, with indentations. Also note the missing ; before every else).
This program will run without problem
From what year are you?
 1
primeiro ano: MAT-1, CALC-1

From what year are you?
 4
quarto ano: QUI, MAT-2

The structure is not very readable, though. To make it better, we can use switch. Whereas in "if
(condition) instruction1;" the condition is necessarily of the boolean type (true or false), in switch
we can use any type of variable that has discreet values (in contrast to floating point variables which do
not have discreet, whole number values).

 switch (expression)
 {
 case value1: instruction1;
 break;
 case value2: instruction2;
 break;
 |
 case valueN: instructionN;
 break;
 default: instructionE;
 }

The expression needs to result in a value of any countable type (for example: int, long int, but also
char. Not, for example: float). This can be a simple variable or a calculation resulting in a value. The
values value1 to valueN also have to be of the same type, but cannot contain expressions or variables;
they have to be of constant type.
The special reserved word "default" means that it will execute this instruction if the expression doesn't
result in any of the values value1 .. valueN.
The break statement forces the program to jump to the end of the loop (the switch-loop in this case).
As an example the above program rewritten to make use of switch:

 main()

Imperative Programming: Lecture T-8

 // same program as above, but with switch statement
 {
 int ano;

 printf("From what year are you?\n");
 scanf("%d", &ano);
 swicth (ano)
 {
 case 1: printf("primeiro ano: MAT-1, CALC-1\n");
 break;
 case 2: printf("segundo ano: INF, LIN-ALG\n");
 break;
 case 3: printf("terceiro ano: ELEC, FYS\n");
 break;
 case 4: printf("quarto ano: QUI, MAT-2\n");
 break;
 case 5: printf("quinto ano: PROJECTO\n")
 break;
 default: printf(">5: AINDA NAO ACABOU?\n");
 }
 }

This progam will have the same output as the program before, but now it is more readable.

Lecture 8: (2==b) || (! (2==b))

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test. Note that
this is NOT the form the final test takes!

Peter Stallinga. Universidade do Algarve, 28 October 2002

Imperative Programming: Lecture T-9

Lecture 9: Loops I: for

Loops are for repeating part of the code a number of times. In C there exist three types of loops,

 for
 while
 do ... while

There is no difference between the first two types of loops, only a matter of legibility of the program. The
do .. while loop differs from the other two by the fact that the condition of exiting the loop is checked at
the end, while for the other two (for and while) it is checked in the beginning of the loop.
Todays lecture is about the for loop.

For loop

The most common loop in C is the for loop. This loop,
in principle, is used to execute things a predetermined
number of times in a countable way. This in contrast
to loops that will run while a certain condition is true,
as we will learn in the next lecture.

 The general structure of the for loop is

for (startI; testC; stepI)

 instruction;
with startI and stepI general instructions and testC a Boolean condition. This will repeat the
instructions instruction and stepI until the test condition results in "false".

The instruction is repeated a number of times,
determined by the control instructions startI and stepI
and the test condition testC. The control instructions
startI and stepI can be any instruction or even
combination of instructions (separated by commas).
The startI instruction is only executed at the beginning of
the loop and only executed once. Immediately after that, the
condition testC is evaluated. If this results is "false" (0),
the loop is immediately exited. Hence it is possible with
the for loop that the instruction is not even executed a
single time (contrary to the do .. while loop as we will see
in the next lecture). If the result of the condition is "true"
(!=0), the instructions instruction and stepI are
executed.

Imperative Programming: Lecture T-9

Since the loop is designed for doing things in a countable way, it is advised to use control variables of the
integer type as in the next example. Do not forget to declare the variable (see lecture 5).

 program code

main()
// for-loop example;
{
 int i;

 for (i=1; i<5; i++)
 printf("Ola\n");
}

 output

 Ola
 Ola
 Ola
 Ola

This program is doing the following
 1) it is attributing 1 to i
 2) it is checking if i is smaller than 5
 3) if not so: EXIT LOOP immediately. Else
 4) execute printf("Ola\n");
 5) add 1 to i
 6) go to step 2)

Multiple instructions

Just like with the if ... else ... structure, we can also group instructions together with {..} in loops:

 program code

for (i = 1; i<5; i++)
 {
 printf("Ola\n");
 printf("It is a nice day\n");
 }

 output

Ola
It is a nice day
Ola
It is a nice day
Ola
It is a nice day
Ola
It is a nice day

Compare this with

 program code

for (i = 1; i<5; i++)
 printf("Ola\n");
 printf("It is a nice day\n");

 output

Ola
Ola
Ola
Ola
It is a nice day

Imperative Programming: Lecture T-9

Use of the loop variable

Inside the loop the loop variable can be used, but don't mess with it

Good code:

 program code

for (i=1; i<5; i++)
 printf("%d Ola\n", i);

 output

 1 Ola
 2 Ola
 3 Ola
 4 Ola

Bad code:

 program code

for (i=1; i<5; i++)
 {
 printf("%d Ola\n", i);
 i = i + 1;
 }

 output

 1 Ola
 3 Ola

The program on the right is an example of bad code. Such style of programming, although at some times
it will save space and maybe executing time, makes your program unstructured and very difficult to
understand for others! If you want to achieve things like in the program on the right, use other loops, like
while or while-do, or , better, use something like in the program below.

program code

for (i=1; i<5; i++)
 printf("%d Ola", 2*i-1);

 output

 1 Ola
 3 Ola

Nested loops

The For loops (and any other loop as well) can also be 'nested', which
means that they can be put within eachother. We can create double loops,
or triple loops (like in the figure below on the left) or any other level.
Such structures look like nests of birds and hence the name 'nesting' of
loops. Here are some examples

 program code

main()
// three nested loops
{
 int i, j, k;

 for (i=1; i<=2; i++)
 for (j=1; j<=2; j++)
 for (k=1; k<=2; k++)

 output

i=1 j=1
k=1
i=1 j=1
k=2
i=1 j=2
k=1
i=1 j=2
k=2
i=2 j=1

 program code
--
main()
// three nested loops
{
 int i, j, k;

 for (i=1; i<=2; i++)
 for (j=1; j<=2; j++)
 {

 output

i=1 j=1
k=1
i=1 j=1
k=2
i=1 j=1
k=1
i=1 j=1
k=2
i=1 j=2

Imperative Programming: Lecture T-9

 printf("i=%d j=%d k=%d\n",
i, j, k);
}

k=1
i=2 j=1
k=2
i=2 j=2
k=1
i=2 j=2
k=2

 for (k=1; k<=2; k++)
 printf("i=%d j=%d k=%d\n",
i, j, k);
 for (k=1; k<=2; k++)
 printf("i=%d j=%d k=%d\n",
i, j, k);
 }
}

k=1
i=1 j=2
k=2
i=1 j=2
k=1
i=1 j=2
k=2
i=2 j=1
k=1
i=2 j=1
k=2
i=2 j=1
k=1
i=2 j=1
k=2
i=2 j=2
k=1
i=2 j=2
k=2
i=2 j=2
k=1
i=2 j=2
k=2

An example. Fibonacci.

Fibonacci numbers are numbers that follow the following rules:
F1 =1
F2 = 1
Fn = Fn−1 + Fn−2

The program below implements this. The user is asked to give the number of Fibonacci numbers to
calculate (n) and then, in a for-loop, the next Fibonacci number is calculated, until there are enough
numbers.

main()
/* program to calculate the first n Fibonacci numbers
 using the algorithm
 F(1) = 1, F(2) = 1 and F(i) = F(i-1) + F(i-2) */
{
 int i, n, fi, fi1, fi2;

 // first ask the user for the number of Fibonacci numbers to calculate
 printf("How many Fibonacci numbers do you want to see?\n");
 scanf("%d", &n);
 fi1 = 1; // variables to store F(i-1) and F(i-2)
 fi2 = 1; // initialize them to their starting value
 printf("1 1 "); // print the first 2 Fibonacci numbers
 // we are going to do something in a countable way, so we will use
 // the for-loop structure:
 for (i=3; i<=n; i++) // print the rest
 {
 fi = fi1 + fi2; // calculate the next number
 fi2 = fi1; // calculate the new F(i-1) and F(i-2)

Imperative Programming: Lecture T-9

 fi1 = fi;
 printf("%d ", fi); // print the result
 }
}
Later we will learn a much more elegant way to calculate Fibonacci numbers using recursive
programming.

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 30 October 2002

Imperative Programming: Lecture T-10

Lecture 10: Loops II: while ... and do ...
while

while ...
The loops in this lecture, while and do-while are used for repeating things that are not exactly countable.
Normally we use this when it is not exactly clear when the loop will finish, for instance because the
control variable changes within the loop (as is strictly disadvised in for loops). Also, when we want to
loop over something with a floating point type variable we use the while and do-while loops.
As we will show, the difference between the while and the do-while loops is the moment the condition is
tested.

The general format of the while loop is

 while (condition)
 Instruction;

This structure is repeating the instruction as long as the condition is true. The condition is any condition
that results in a boolean value (TRUE or FALSE), as we have discussed in lecture 8. This can be a
comparison, or anything else (still information in file?, user pressed a key?, etc).
Note that the structure while does not attribute a starting value to any variable like in the for-loop. So, we
have to do this ourselves.
Example:

program code

main()
// while example
{
 float x;

 x = 0.0;
 while (x<=1.0)
 {
 printf("%0.1f\n", x);

 output

 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Imperative Programming: Lecture T-10

 x = x + 0.1;
 }
}

 0.9
 1.0

do ... while
The do-while structure is very similar to the while structure. Theonly difference is that now the condition
is checked at the end of the instructions to be repeated. The general format is

 do
 Instruction;
 while (condition);

A very important difference between while and do-while is that with while the condition is checked in the
beginning of the loop, whereas in do-while it is checked at the end. Therefore, the instructions in
do-while are at least executed once.
Look at the following programs (also an example with a for-loop is included). Only the code with the
do-while structure has output.

program code

x = 100;
do
 {
 printf("Ajax\n");
 x = x + 1;
 }
while (x<=10);

program code

x = 100;
while (x<=10)
 {
 printf("Ajax\n");
 x = x + 1;
 }

program code

for (i=100; i<=10; i++)
 printf("Ajax\n");

output

Ajax

output output

for, while e do-while compared

Imperative Programming: Lecture T-10

Effectively, the for and while loops are exactly the same. Both have a condition that is checked in the
beginning of the loop and a step instruction. The only difference is that the for-loop already includes a
starting instruction. If we precede the while-loop with a starting instruction, the two loops are equal:

for
for (startI; testC; stepI)
 instruction;

while
startI;
while (testC)
 {
 instruction;
 stepI;
 }

for (i=1; i<=10; i++)
 printf("%d", i);

i=1;
while (i<=10)
 {
 printf("%d", i);
 i++;
 }

Only for the sake of readability of the program will we use the for-loop for repeating things in a countable
way. For all other types of loop will we use while and do-while. In the do-while loop the instructions are
at least executed once. Always take these considerations into account when deciding for the type of loop
to use.

Nesting II

Now that we know all the types of loops, let's take a look at the rules-of-good-behavior related to nesting:

Each (for) loop must use its own seperate control variable.
The inner loop must begin and end entirely within the outer loop

Examples of bad code:

for (i=1; i<=10; i++)
 {
 for (i=1; i<=20; i++)
 printf("%d", i);
 }

for (i=1; i<=10; i++)
 {
 x = i;
 do
 x = x+0.1;
 }
while (x<20);

Two loops with equal control variable i. Two loops not well nested.
Good indentation of your program will
always avoid such errors.

Imperative Programming: Lecture T-10

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 4 November 2002

Imperative Programming: Lecture T-11

Lecture 11: Modular Programming I:

Functions

Until now we have only used the things that were supplied by C. We have learned how to write loops
(for, while, do-while), how to have input and output (scanf, and printf), how to control the flow of the
program (if, if-else, switch), how to declare variables, how to assign values to constants (=) and how
to calculate, even up to complicated Boolean algebra, but we have never invented anything NEW. With
Functions we can do exactly that.
We already met a couple of functions which are standard in C, namely printf, e scanf. Now we will
define our own functions.

Functions are small subprograms or modules of the main program. Each of theses modules performs a
certain task. This helps to organize the program and make it more logic and can also increase the
programming efficiency by avoiding repetitions of parts of the program. Moreover, functions allow for
easy copying of parts of the code for other programs.

input/output

Modules (functions) can have input and/or output. In this case, input means accepting parameters, while
output means returning a value. Note that, regardless of the fact if the functions accepts input parameters,
the function always has parenthesis, both in the declaration as in the function call, as we will see later.
This is to distinguish functions from variables.

 examples without
input

with
input

without
output

abort() srand()

with
output

rand() sqrt()

abort() stops the program, rand() returns a random value, srand() initializes the random-number
generator, sqrt() returns the square root of the argument.
This is the main difference between functions we know from mathematics and functions from C. In
mathematics, every function has input (the argument) and output (the function value). For example
 f(x) = x2 −1
with x the input and f(x) the output. While in C, we can have functions with and without input and output.
Therefore, the more genaral name for functions is "procedures", "(sub)routines", or "modules".

Functions are like programs-within-programs. They

Imperative Programming: Lecture T-11

must have a name. The same rules for identifiers applies to the names of functions. See aula 5.
can have variables. These have to be declared in the function and are only accessible by the
function.
must have a { and } combination indicating the start and end of the function.
(can) have instructions.

A prototype of the declaration of a function:
 type functionname(type <parameters>)
 {
 type <variables>;
 instructions;
 }

output (type, void, return)

The type of the value the function will return has to be specified at the declaration of the function. For
example
 int countnumber();
will mean that the function will return a value of the type int.

Somewhere in the function we must return a value to the calling program. We do this with the return
statement
 return (<value>);
for example
 return (3);

When want that the function doesn't return anything, we can specify this with the word void:
 void showresult();
will not return anything. Therefore, functions of type void don't need the return statement.

Note: in some compilers the type declaration of the value to return is optional. In some compilers, the
absence of the type declaration signifies that the function is of type int, while in others it signifies void.
To add to the confusion, omitting a return statement is in some compilers an error, while in others it is
not.
Therefore: stick to the conventions of standard ANSI C above and write compiler-independent programs!

main()
In fact, main is nothing more than a normal function, with the only difference that the program always
starts with the first instruction of this function main. Otherwise it follows the same rules of functions
described above. Technically speaking, we either have to specify the type as void or return something at
the end of our program.

void main()
{
 ...
}

int main()
{
 ...
 return (0);
}

Imperative Programming: Lecture T-11

placement

The place to declare our own fucntions is before the function main. If we declare them after the function
main we will not be able to use them inside main because the compiler does not know them yet when it
arrives at compiling main. A function can only call other functions that have been declared (in some way)
before.

Calling

After declaring a new function, we can use it in the main program. This is called
calling the function. We do this by writing the name of the function. As a complete
example of a program with a single module (function) without input parameters or
output (void):

program code

#include <stdio.h>

void module1()
{
 int y;

 printf("Now I am entering Procedure Module1\n");
 printf("Give a value for y\n");
 scanf("%d", &y);
 printf("%d", 3*y);
// Type of function is void.
// No need to return anything.
}

void main()
{
// The program starts at the first instruction
// of function main:
 printf("Starting the program\n");
// now our function will be called:
 module1();
 printf("Ending the program\n");
}

output

Starting the program
Now I am entering Procedure Module1
Give a value for y:
 4
12
Ending the program

A program calling one of

its functions

As seen above, at the end of the function, the program continues with the instruction immediately after
the function call. In this case, after module1() has finished, it will execute printf("Ending the
program\n");

Functions calling functions

Functions can also be called by other procedures or functions. Under normal
circumstances, in C these procedures have to be declared after the procedure

Imperative Programming: Lecture T-11

to be called, though. Take a good look at the following program and the
output it generates when run:

program code

include <stdio.h>

void module1()
{
 printf(" inside module 1\n");
 printf(" Hello World\n");
 printf(" leaving module 1\n");
}

void module2()
{
 printf(" inside module 2\n");
 printf(" calling module 1\n");
 module1();
 printf(" back in module 2\n");
 printf(" leaving module 2\n");
}

void main()
{
 printf("starting the program\n");
 printf("calling module 2\n");
 module2();
 printf("back in main\n");
 printf("ending program");
}

output

starting the program
calling module 2
 inside module 2
 calling module 1
 inside module 1
 Hello World
 leaving module 1
 back in module 2
 leaving module 2
back in main
ending program

A program calling one of its functions

which, in turn, is calling one other function

Note that forward function calls, like in the above example a call from module1() to module2(), are not
allowed under normal circumstances. main can call module1() and module2(), module2() can call
module1() and module1() can call nothing.

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 5 November 2002

Imperative Programming: Lecture T-12

Lecture 12: Modular Programming II:

functions with input and output

In the previous lecture (aula 11) we have seen functions that are not accepting parameters and are not
returning values. These are simple functions. Now we are going to look at functions that are accepting
parameters and functions that are producing return values.

Parameters to pass to functions

We can pass parameters to functions. The functions can then work with these parameters. Inside the
function, the parameters work like normal variables. In C the parameters the functions expects are put
after the name of the functions inside parenthesis. For a function that doesn't have output (or in other
words, "returns type void"):

A function with input (but without output):

 void
functionname(parameter_list)
 {
 <local variable
declarations>
 instructions;
}

The variables on the parameter list are declared in the same way as the normal variables of a program or
functions, namely we have to specify the type of each parameter. Inside the functions we can use the
parameter as if it were a normal variable. We can calculate with it, use it in conditions, and even change
its value. It doesn't have to be initialized, though, because the initialzation comes from the calling
program.

As an example, the following program will calculate and show the square of a variable x: Note the way
the parameter r is declared and used.
program code

#include <stdio.h>

void write_square(float r)
{
 float y;

 y = r*r;
 printf("The square of %f is %f", r, y);
}

output

The square of 4.0 is 16.0
The square of 3.0 is 9.0

Imperative Programming: Lecture T-12

void main()
{
 float x;

 x = 4;
 write_square(x);
 write_square(3.0);
}

As seen in the program above, the functions with parameters can now be called with a variable, as in
write_square(x) or with a constant.as in write_square(3.0).

Another example, that uses two parameters:
program code

#include <stdio.h>

void write_sum(int i1, i2)
/* write the sum of i1 and i2 */
{
 int j;

 j = i1+i2;
 printf("The sum of %d and %d is %d',
 i1, i2, j);
}

void main()
{
 int x, y;

 x = 4;
 y = 5;
 write_sum(x, y);
 write_sum(3, 4);
}

output

The sum of 4 and 5 is 9
The sum of 3 and 4 is 7

Note that we have to pass to the function the type of information that is expected. In this case, the
function expects two integers, so we should pass two integers (x and y).
Finally, an example with a parameter list of mixed types. Variables to be declared in the parameter list are
separated by a comma ,
program code

#include <stdio.h>

void write_N_times(float r, int n);
 /* Will write n times the real r */
{
 int i;

 for (i= 1; i<=n; i++)
 printf("%10.3f\n", r);
}

void main()
{

output

3.000
3.000
3.000
3.000

Imperative Programming: Lecture T-12

 write_N_times(3.0, 4);
}

Functions with output

Functions can return an output value. The type of the returning value has to be specified at the moment of
declaring the function before the name of the function

 type FunctionName(parameter_list)
 {
 <variable_list>
 instructions;
 } Functions with output and with input

parameters

Somewhere in the instructions we have to specify a returning value. We do this with the reserved word
return

 return (value);
Obviously, the value has to be of the same type as the type of the declaration of the function.
Note that the return instruction immediately exits from the function and the instructions after return will
not be executed.

 double square(double r)
 /* will return the square of of the parameter r */
 {
 r = r*r;
 return (r);
 }

At the place where the function will be called, we can assign this value to a variable (of the same type as
the returning value of the function!), for example

 y = square(3.0);

use it as part of an expression, for example

 y = 4.0 * square(3.0) + 1.0;

or use it in another function, for example

 printf("%f", square(3.0));

A full example:

program code

/* example with parameters */

output

The square of 4.0 is 16.0

Imperative Programming: Lecture T-12

#include <stdio.h>

double square(double r)
 (* will return the square of of the parameter r *)
{
 r = r*r;
 return(r);
}

void main()
{
 double x, y;
 x = 4.0;
 y = square(x);
 printf("The square of %f is %f\n", x, y);
 printf("The square of %f is %f\n", 3.0, square(3.0));
}

The square of 3.0 is 9.0

What is happening in the instruction y = square(x) is the following:

The value of the expression inside parenthesis is calculated. In this case this is simple. It is the
value of x, namely 4.0;

1.

This value (4.0) is passed to the function square(). Inside the function:2.
A temporary variable with name r is created.3.
The value passed to the function is attributed to this variable r. Effectively an instruction r=4.0 has
happened.

4.

r=r*r; The new value of r is calculated. r now has the value 16.0.5.
return(r); The value of the expression inside parenthesis (16) is passed back to the calling
instruction (y=square(x);); where it will be used further.

6.

In this case, the value returned (square(4.0) which is 16.0) will be attributed to y. The instruction
y=square(x); effectively becomes y=16.0;

7.

The next line (printf...) shows the values of the variables x and y. (Note that the value of x has
remained unchanged and is still 4.0. later, in the lecture on "passing by value / passing by
reference" will we see that it is not necessarily like that.)

8.

Note that in C we don't have to use the value that is coming back from the function. We could, for
example write in our function main()
 square(3.0);
This construction is very confusing and should be avoided when possible in structured programs; a value
returned by a function should, in principle, be used on the receiving side.

Why?

Now the big question is "why?". Why write functions if we can do the same thing with normal lines of
instructions? Indeed, the first languages (for example BASIC) didn't have the possibility to write
functions and still we could write programs to solve any problem with it. There are however three
important reasons why to use modules.

With modules, because they are like black boxes, we can
distribute our programming tasks over several people or groups
of people without having to have much communication between
the people. We can tell somebody that we need a function that
diagonalizes a matrix and we do not have to say how we want it

Imperative Programming: Lecture T-12

done. We will only specify the type of parameters to pass to the function.
For the same reason, we can easily copy parts of other programs or libraries for our purpose (as
long as we will only use parameters and local variables, as we will show later). In the ideal case we
will just "link" those functions that we will need to our program, without knowing exactly how they
work. (Of course with knowing what they will do and how to call them). An interesting side effect
of this is that we can distribute our functions in a precompiled way, so that the source code remains
safe with us.
With functions the program becomes shorter, more efficient and more readible by avoiding
repetitions of code and by organizing it more logical.

Quick test:

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 8 November 2002

Imperative Programming: Lecture T-13

Lecture 13: Arrays

Array

Imagine that we want to write a program to calculate the average of 10 numbers. With the knowledge we
gained until now, we could do this by defining ten different variables, for instance
 float a1, a2, a3, a4, a5, a6, a7, a8, a9, a10;
 float average;
and in the program code:
 average = (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) / 10.0;
I hope you will agree that this is very cumbersome. And, it could be even worse: imagine we want the
user to select how many numbers to use in the calculation of the average:
 int n;

 scanf("%d", &n);
 switch (n)
 {
 case 1: average = a1;
 break;
 case 2: average = (a1 + a2) / 2.0;
 break;
 case 3: average = (a1 + a2 + a3) / 3.0;
 break;
 |
 case 10: average = (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) / 10.0;
 }
For these purposes exist the arrays. An array lets us define a set of variables of the same type with an easy
way of access, namely with an index. Just like in mathematics, ai is the i-th element of vector or series a,
a[i] gives the i-th element of array a.

 An array is a set of indexed variables
of the same type.

Declaration of an array

To declare an array we use the following syntax:

 type name[numelement] ;
name is the identifier of the array, just like a name for other variables.
numelement defines the number of elements in the array. The elements run from 0 to

Imperative Programming: Lecture T-13

numelement-1. This is a little confusing for beginning programmers, who are used to indices from 1 to n.
type is any variable type, for instance float or int.

Examples:

 float account[100];
This might be used to store the information of 100 bankaccounts.

 long int prime[10];
This might be used to store the first 10 prime numbers..

 int propinas[2000];
This might be used to store some simple information of the status of the students with numbers between 0
and 1999, for instance if they paid their tuition fees or not.

Use of an array

Inside the program we can use the elements of an array.

 name[index]
name[index] will return the value element number index of the array name. This is then a
value of the type as described in the declaration of the array. Examples of the arrays declared
in the previous section:

 account[20]
is the value - of type float - of element 20 of the array with name account.

 prime[8]
is the value - of type long int - of element 8 of the array prime. The figure on the right might
represent this array, so element number 8 would be equal to 19. Of course, our program has to
fill this array in some way before the array really contains the prime numbers.

 propinas[1055]
is 1 or 0 (type int). Element 1055 of the array propinas. Did student 1055 pay his tuition fees?
Probably our university administration has somewhere in their computers an array with this
information.

We can also use a variable for the index in addressing a single element of an array. Naturally,
this variable needs to be of any integer type, because the index is something countable; index
3.4981 does not make sense. Index 3 does, it will address the third element of the array. The
following code will show the entire array of 20 accounts:

 for (i=0; i<20; i++)
 printf("%f\n",account[i]);

Multiple arrays

Just like in mathematics, where we have vectors (tensors of 1 dimension) and matrices (tensors of 2
dimensions) we can have arrays of 1 dimension or 2 dimensions or even more. We can specify this in the
following way, for instance a 'double array' (an array of two dimensions):

Imperative Programming: Lecture T-13

 type name[numindex1][numindex2];

The use of a double array is similar to that of a single array. We separate the indices with a comma, or by
putting them in separate square parenthesis:

 name[index1][index2]

As an example: to write the matrix of the figure on the left we might
do the following in a complete program. Note that the array consists
of 9 (3x3) elements of type integer.

void main()
{
 int matrix[3][3];

 matrix[0][0] = 1;
 matrix[0][1] = 0;
 matrix[0][2] = 1;
 matrix[1][0] = 2;
 matrix[1][1] = 2;
 matrix[1][2] = 0;
 matrix[2][0] = 1;
 matrix[2][1] = 0;
 matrix[2][2] = 1;
 for (i=0; i<3; i++)
 {
 for (j=0; j<3; j++)
 printf("%d ", matrix[i][j]);
 printf("\n");
 }
}

 Caution

When we are using an array we also have to be careful not to use an index
that is 'out of bounds'. This means that we always have to use an index that
is less than the total number of elements in the array. If we use a too large
index, the results of our program can be very odd. This is best illustrated in
an example. The following program defines an array r of 4 integers running
from r[0] to r[3], and a normal integer a. The figure on the left shows how
they might be placed in memory. What will happen when our program
assigns a value to r[4]? If r[4] had existed, it would have occupied the
place that is now taken by a, and an assignment to r[4] would be putting a
value in the box of what is now occupied by a. Most computer languages

Imperative Programming: Lecture T-13

don't care and put the value for r[4] there anyway, thereby overwriting
the value of a.

 main()
 {
 int a;
 int r[4];

 a = 0;
 printf("a=%d\n", a);
 r[4] = 1;
 printf("a=%d\n", a);
 }

The output of the program will probably be

 a=0
 a=1

Some programming languages can check for this at run-rime. This is called
range-checking and when the program tries to use a wrong index, a message
'range-check error' or 'array index out of bounds' will be displayed. The
disadvantage of doing this is that the program becomes slower and the
compiled program will occupy more space in memory and on disk.

Note: it depends on the exact implementation of the language/compiler. With some languages, it will
overwrite the variable declared before the array as in the example above, while in other languages it will
overwrite the variable after the array. You can find out by declaring the variables
 int a;
 int r[4];
 int b;
and see if r[4] overwrites a or b.

 "Hurray! I know everything about arrays."

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 12 November 2002

Imperative Programming: Lecture T-14

Lecture 14: Pointers

Pointer

A pointer is a special type of variable. In itself it contains no useful information. It
is only an address to what (might) contain useful information.

 A pointer contains the address of a place in memory

This is like keeping the address of an appartment in my addressbook. It is only an address and nothing
more.

Declaration

To declare a pointer we can use the following syntax:

 type *name;
With name the name of the pointer variable and type the type of information the pointer name points to.
This can be any type we have learned, from simple floats or ints to more complicated types we will learn
later.
Examples:

 int *p;
Now p is a pointer that points to information of the type int.

 float *f;
Now f is a pointer that points to information of the type float. The value of f itself is not of type float,
because f is a pointer and its value is an address. Only the contents of the memory address that f is
pointing to contains information of type float.

Pointer operations

There are two pointer operations in C.

 &x returns address of variable x
 *p is what pointer p points to (contents of address

p)

Imperative Programming: Lecture T-14

Let's declare a variable of type float x and a pointer to floats p:
 float x;
 float *p;

In the figure on the left, x is a variable of type float that has a value of 3.0.
When we want the pointer p to point to this variable, we can use
 p = &x;

The value of p is now a memory address, namely the address that contains the
variable x. To show the contents of the memory of what p points to, we can do
this with
 printf("%f", x);

or via the pointer
 printf("%f", *p);

Type specification

Why is it important that we specify the type the pointer points to? This is best shown in an example

Picture the following situation. The figure below shows a part of the memory and its contents. A pointer p
points to a place in this memory. If p is pointing to a byte (unsigned char) as shown in the top line, the
contents of the address p are *p =129 (binary: 10000001), while with p pointing to the same place in
memory, but pointing to an unsigned int*p = 25473 (binary: 0110001110000001), or p pointing to a
long int (4 bytes, 32 bits) will give 743924609 (binary: 00101100010101110110001110000001). (Note
that in Intel-processor-based computers numbers are stored with their lowest value bit [LSB=least
significant bit] first).

Therefore, we have to specify the type the pointer is pointing at.

Example

Now let's see an example to show check if we have everything under control. We are going to create a
pointer of type 'pointing to a word', and let it point to a word:

void main()
{
 /* declare a word (unsigned int) and a pointer to word: */

Imperative Programming: Lecture T-14

 unsigned int *wordptr;
 unsigned int w;

 /* assign a value to the word */
 w = 25473;

 /* let a 'pointer to word' point to our word */
 wordptr = &w;
 /* show the contents of the memory wordptr points to */
 printf("%d", *wordptr);
}

output:
 25473

Now let's see a more complicated example. We are going to create a pointer of type 'pointing to a byte
(unsigned char)', and let it point to our unsigned int:

void main()
{
 /* declare a word (unsigned int) and a pointer to word: */
 unsigned char *charptr;
 unsigned int w;

 /* assign a value to the word */
 w = 25473;

 /* let a 'pointer to char' point to our word */
 charptr = &w;
 /* show the contents of the memory wordptr points to */
 printf("%d", *charptr);
}

output:
 129

(output for Borland C++ version 3.1 for MS-DOS. On other computers or versions the output might be
different)
This shows that we have to be careful what our pointer points to. The value depends on the type!

Pointers and arrays in C

In C, all arrays are pointers. What this means is that when we declare an array
 int a[10];
this will
 - reserve 10x2 bytes in memory
 - assign the address of this memory to a
Therefore,
 a is of type 'pointer to int' and the value of a is an address.
 *a is the contents of address a. In this address resides the first element of a, namely a[0].
Therefore, the two forms, *a and a[0] are completely interchangeable and any of the two can be used at
any time. We will see this later, when we discuss strings (arrays of char).
We have to remember this when we pass information to a function; when we pass an array, we pass the
address of the array, rather than all the elements of the array. With arrays in C we always use the
technique of passing by reference (see lecture 15).

Imperative Programming: Lecture T-14

Initialization

Initialization of a variable is even more important for pointers. Without
initialization, a pointer points to a random part of memory, where important
programs might be running. These programs and the computer can crash when we
write in this place. The following program might crash the computer. It defines a
pointer and doesn't assign an address to it. The value of the pointer (the address)
is therefore unpredictable. The program then writes a value in this random
address.
void main()
{
 int *p;

 *p = 0;
}

Why?

Why use pointers? There are several reasons to use pointers instead of normal variables. The most
important ones are

Speed Flexibility

Speed: Imagine you want to write a progam that moves a lot of information around. In the conventional
way, this would mean copying a lot of bytes from one part of the memory to another part. Take for
example the sorting of an array with name.
(a pointer is just 4 bytes in Intel computers).

Flexibility: If, at the beginning of the program we do not know yet how many variables we need we
would have to reserve space for all possible eventualities. If we want to write a program that calculates
the first N prime numbers, with N given by the user, we would have to declare an array of maximum size
to be sure that we can fit the users request in it. With this we would completely occupy the memory of the
computer. Nothing else can run anymore. Much nicer would be if we could declare the array (the
variables) dynamically so that we only use memory if we really need it. With pointers this is easily
possible.

The pointers and the idea of dynamic creation of variables also lies at the basis of object-oriented
programming, which is the type of programming of every modern computer language. Object oriented
programming is outside the scope of this lecture, though.

Imperative Programming: Lecture T-14

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 13 November 2002

Imperative Programming: Lecture T-15

Lecture 15: ... of variables and functions

This lecture:

Global and local variables
Passing by value, passing by reference.

Scope of variables: Global or local

 Global variables are variables that can be
used everywhere in the program

 Local variables are only defined inside the
function where they were declared.

With this new information, it is much more clear which variable we can use when.
Inside functions we can use the global and the local variables but functions cannot use
eachothers variables. The function main cannot use the variable of the function
module1, int y. Module1 cannot use the variable of function main, int z. Both
functions can use the global variable x, however.

Warning: try to avoid the use of global variables in functions as much as
possible. The reason why is simple. If we want to copy the function for another
program this will be more difficult, becuase the new program probably will not have the
same global variables. Using only local variables in functions is therefore much better.
If you want to use the global variables, pass them as parameters to the functions.

Ideally, a function is a stand-alone unit.

Imperative Programming: Lecture T-15

One more rule, typically for C and languages alike (single-pass compilers): variables
can only be used in places AFTER their declaration in the program, so, if we put the
declaration of a variable after a function, this function cannot use the variable, even if
the variable is global.
Let's take a look at some examples. First a program of lecture 13:

#include <stdio.h>

 /* declare global variables x and y */
double x, y;

double square(double r)
{
 /* declare local variable localr */
 double localr;

 /* using the local variable localr */
 localr = r*r;
 /* using the global variable x */
 x = localr;
 return(x);
}

void main()
{
 x = 4.0;
 y = square(x);
}

Priority

Variable x is a local and

a global variable.
Inside the function, the

local variable
will be used.

When local and global variables exist with the same name, the local variable has
higher priority and will therefore be used inside the function. Anyway, this is
confusing, so always try to avoid using the same identifier again!

Some languages do not have the difference between local and global variables
(for example BASIC). This will mean that we cannot use the same name for a
variable twice.

Passing by value or by reference

When passing parameters to functions, we can do this in two different ways, either passing by value, or
passing by reference.
Passing by value:
Until now we have only seen the first type. In this way, only a value is passed to the functions. Whatever
we do with that value in the function will have no effect on the original value of the variable used in
calling the function. As an example, to make this more clear. Assume we have a function that writes the
square of the parameter p. To calculate the square we assign a new value (p*p) to p. The value of p will

Imperative Programming: Lecture T-15

therefore change inside the function:
 void write_square(double p)
 {
 p = p*p;
 printf("%f", p);
 }
When we now call the function with a variable x, the value of this variable will not change by calling the
function. In the main program:
 void main()
 {
 double x;

 x = 2.0;
 write_square(x);
 printf("%f", x);
 }
After returning from the function, the value of x hasn't changed. The total output of the program above will
therefore be
 4.0
 2.0

Passing by reference:
On the other hand, if we do want to change the value of the variable used in calling the function, we can do
this by passing the address of the variable to the function. All changes to the contents of this address are
therefore permanent
 void write_square(double *p)
 /* p is a pointer-to-double */
 {
 /* change the contents of address p: */
 *p = *p * *p;
 /* show the contents of address p: */
 printf("%f", *p);
 }

 void main()
 {
 double x;

 x = 2.0;
 /* now we have to pass the address (&) of the variable x: */
 write_square(&x);
 printf("%f", x);
 }
If we now run the program, the output will be
 4.0
 4.0
because the value of x has changed simultaneously with the the contents of address p.

Imperative Programming: Lecture T-15

Passing by value Passing by reference
In the analogon of boxes visualizing variables: passing by reference is handing over the box (variable) to
the funtion which can then use and change the value in the box, while passing by value is equivalent to
opening the box, copying the value and handing only that value over to the function. Obviously, then the
original value stays in the box.
Or in another example: I can tell you how much is on my bank account, which you can then use to
calculate how much it is in dollars, or I can give you the right to change the amount on my bank account,
in which case, the amount will probably change.

scanf() revisited

With this in mind, we can take a look again at how we used the function scanf() for getting input from
the user. Remember that we always had to use the form
 scanf("%d", &i);
Or, in other words, we always had to give the address of (&) the variable (i) to scanf. Now it makes
sense. We want to change the value of i with the function scanf. Therefore, we have to use the technique
of passing by reference. Therefore, we have to give the address of i, rather than the value of i to scanf.

Example: Carthesian to polar coordinates

As we know, functions can only return a single value. What if we want to return more than one value to
the calling part of the program? Take for example the conversion from Carthesian to polar coordinates. As
input we have a coordinate (x, y) and as output we have a Carthesian coordinate (r, θ). These are two
values, one value for the radius (r) and one for the angle (θ). The following solution shows how we can
pass this information without using global variables:

#include <stdio.h>
#include <math.h>

void convert_to_polar(float x, float y, float *r, float
*theta)
/**
 * function to convert carthesian coordinate (x,y) to *
 * polar coordinate (r,theta) *
 * parameters: *
 * x,y: floats, passed by value *
 * r, theta: (pointers to) floats, passed by reference *
 * (changes are permanent) *
 **/
{
 *r = sqrt(x*x + y*y);
 *theta = atan(y/x);
}

void main()
{
 float rl, thetal;

 convert_to_polar(1.0, 1.0, &r1, &theta1);
 printf("polar coordinate is (%f, %f)\n", rl, thetal)
}
output:

Imperative Programming: Lecture T-15

 polar coordinate is (1.4142, 0.78539)

Type mixing

When passing information to functions we have to take
even more care that we don't do any mixing of types,
especially when we use pointers. As a (bad) example:
 void double10(double *dp)
 {
 *dp = 10.0;
 }

 void main()
 {
 float y=10.0;
 float x=10.0;

 double10(&x);
 printf("%f %f\n", x, y);
 }
A double occupies 8 bytes. Assigning a value to the
contents of a pointer-to-double will therefore write in 8
consecutive bytes of memory. The pointer passed to the
function is of type pointer-to-float, however. We have (by
declaring the variable x of type float) only reserved 4
bytes of space in memory. The instruction *dp = 10; will
now write in these 4 bytes and the 4 bytes next to it (that
don't belong to x but to y)
The output of the program above (Borland C++ 3.01 for
MS-DOS):
 0.000000 2.562500
Always avoid mixing of type:

Give to the function what the function
wants

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 19 November 2002

Imperative Programming: Lecture T-16

Lecture 16: Recursive programming

Recursive

A function is recursive if it is defined in terms of
itself (i.e., it calls itself)

Example 1: Factorial

The classic example is the calculation of the factorial function n! We might do this with a loop, as
described in lectures 11 and 12:
int factorial(int n)
 /* returns n! */
{
 int i, result;

 result = 1; /* initialize the variable */
 for (i=1; i<=n; i++)
 result = i*result;
 return(result);
}
This function, indeed, will return the factorial of the argument, for instance factorial(5) = 120. Check
this.

A much more interesting solution is via defining the function factorial in terms of itself, just as we have
learned in school,

 n! = n*(n−1)!

Let's do exactly that:
int factorial(int n)
 /* should return n! */
{
 /* the value to be returned is expressed in terms of itself: */
 factorial = n*factorial(n-1);
}

This function is already nearly correct. The only problem is that it will never stop
calling itself. For instance, we can call it with factorial(4), which will then try to
calculate 4*factorial(3) and hence call factorial(3). factorial(3) will try to
calculate 3*factorial(2), which will call factorial(2), ... which will call

Imperative Programming: Lecture T-16

factorial(1) ... which will call factorial(0) ... which will call factorial(-1) ...
which will call factorial(-2) ... and this will never end. The program will never
return anything and the computer will crash, probably generating a so-called "stack
overflow" error. Clearly we have to build in a way to stop calling itself. Now remember
that in the mathematical way of defining a function in terms of itself we also always
had to build in a stop, for the factorial function, this was

 1! = 1

Let's also built this into our function:
int factorial(int n)
 /* returns n! */
{
 if (n==1)
 return(1);
 else
 return(n*Factorial(n-1));
}

The idea we should learn from this is that we should give it a possibility to come up with an answer and
exit the recursive calculation. Just like the way we had to give a loop the possibility to end we should also
give this possibilty to recursive functions. If not, the program will continue forever (or crash).

Example 2: Fibonacci

Remember from the practical lessons, the definition of a Fibonacci number is in terms of itsef:
 fn = fn−2 + fn−1
with the stopping conditions
 f1 = 1
 f2 = 1
For instance,
 f3 = 1 + 1 = 2
 f4 = 1 + 2 = 3
 f5 = 2 + 3 = 5
 f6 = 3 + 5 = 8
 f7 = 5 + 8 = 13

We can implement this in a function, note the stopping condition:
int fibonacci(int n)
{
 if ((n==1) || (n==2))
 return(1);
 else
 return(fibonacci(n-2) + fibonacci(n-1));
}

Variables

Variables that are declared inside recursive functions are all local. Moreover, everytime the function is
called, a new instance of the variable is created that exists until the function finishes. (in C we can prevent
this with the word "static" in front of the variable declaration). Each of these variables, although they

Imperative Programming: Lecture T-16

have the same name, will point to a different space in memory. As an example, let's create a local variable
in our factorial function:
int factorial(int n)
{
 int m, result;

 m = 2*n;
 printf("%d ", m);
 if (n==1) then
 result = 1;
 else
 result = n*factorial(n-1);
 printf("%d ", m);
 return(result);
}
When we call this function with argument 3 the following will happen:

instruction variables
factorial(3) is called
 variables n, m and result are created m=* r=* n=*

 3 is assigned to n (from the function call)
 2*3 is assigned to m

m=6 r=* n=3

 factorial(2) is called m=6 r=* n=3

 variables n, m and result are created
 (new ones; different from variables above!)

m=* r=* n=* m=6 r=* n=3

 2 is assigned to n (from the function call)
 2*2 is assigned to m

m=4 r=* n=2 m=6 r=* n=3

 factorial(1) is called m=4 r=* n=2 m=6 r=* n=3

 variables n, m and result are created
 (different than the ones above)

m=* r=* n=* m=4 r=* n=2 m=6
r=* n=3

 1 is assigned to n (from the function call)
 2*1 is assined to m

m=2 r=* n=1 m=4 r=* n=2 m=6
r=* n=3

 ... we reach the stop condition and result = 1; m=2 r=1 n=1 m=4 r=* n=2 m=6
r=* n=3

 The value of m is writen: 2 m=2 r=1 n=1 m=4 r=* n=2 m=6
r=* n=3

 The value of result (1) is returned to the calling
instruction
 we exit factorial(1), the last n, m and result are
destroyed

m=4 r=* n=2 m=6 r=* n=3

 result is calculated: n*factorial(n-1) becomes
 n*'value just returned' -> 2*1 = 2

m=4 r=2 n=2 m=6 r=* n=3

 The value of m is written: 4 m=4 r=2 n=2 m=6 r=* n=3

 The value of result (2) is returned to the calling
instruction
 we exit factorial(2), the last n, m and result are
destroyed

m=6 r=* n=3

 result is calculated: n*factorial(n-1) becomes
 n*'value just returned' -> 3*2 = 6

m=6 r=6 n=3

 The value of m is written: 6 m=6 r=6 n=3

 The value of result (6) is returned to the calling
instruction
 we exit factorial(3), the variables n, m and result
are destroyed

Imperative Programming: Lecture T-16

the value returned from factorial(3) is 6

r means variable 'result'
* means undetermined value

What we learn from this is that the variables are not static objects in memory, pointing to certain
addresses, but instead, the variables are created at the time we run the program. Each time we enter the
function, new ones are created that live until we exit the function. Moreover, as can be seen in the
example above, the last variables created are the ones used locally.
(This only applies to languages that have dynamic variables, like C or PASCAL)

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 22 November 2002

Imperative Programming: Lecture T-17

Lecture 17: strings

string

 A string is an array of char
We will now see the implications of this simple definition.

As an example: declaring a string of 100 characters:
 char n[100];

Naively we might now think that assigning a value to this variable could be done with
 n = "Benfica";
but remember that n is a pointer to char (see lecture 15) and the right side of the = isn't (it is a string
constant). The way to do it would be to assign a value to each element of the array:
 n[0] = 'B';
 n[1] = 'e';
 n[2] = 'n';
 n[3] = 'f';
 n[4] = 'i';
 n[5] = 'c';
 n[6] = 'a';
 n[7] = '\0';
With on the left side of each = an element of the array (char) and on the right side a character constant.
Therefore the assignements are correct. (Note the '\0' character at the end, which signifies end-of-string.)
This, however is very clumsy. For this reason and in general to facilitate working with strings, there exist
many instructions to help working with strings. These are defined in the library string.h and when we
want to use them we have to "include" the library in the beginning of the program with
 #include <string.h>

string.h
The following functions of string.h are interesting for us

Imperative Programming: Lecture T-17

strcpy copy contents of one string to another
strcat adds one string to another
strcmp compares two strings
strlen returns the length (number of characters, excluding \0) of the string
strstr look for position of one string in another string

strcpy
short for "string copy". copies contents of one string to another.
function definition: int *strcpy(char *s1, const char *s2)
copies contents of s2 to s1.
This is a function that takes two parameters, two strings (array of char,
therefore pointer to char) s1 and s2 and copies contents of s2 to s1. The
changes to s1 are permanent. The function returns an int indicating the
success of the operation. For the moment we can ignore this result, to not
further complicate matters. Also we will ignore the word const in front of the
second parameter declaration. An example:
 char n[10];
 strcpy(n, "Benfica");
 printf("%s\n", n);
output
 Benfica

Effectively, what the function strcpy is doing is copying the characters of
string s2 to s1 until the end-of-string character is encountered:
do
{
 *s1 = *s2; // copy a character; copy contents of
 // address s2 to address s1
 s1++; // make pointer s1 point to next character
 s2++; // make pointer s2 point to next character
}
while (*s2 != '\0'); // repeat until end-of-string encountered

strcat
short for "string concatenate". adds string to other string
function definition: char *strcat(char *s1, const char *s2)
adds s2 at end of s1.
Two parameters, s1 and s2 are pointers to char (arrays of char). Again, like above, we will ignore the value
(char pointer) that the function returns.
Example:
 char n[30];
 strcpy(n, "Benfica");
 strcat(n, " o glorioso");
 printf("%s\n", n);
output
 Benfica o glorioso
Effectively, the strcat function is equivalent to the following code:
while (*s1 != '\0') // look for
 s1++; // end-of-string

Imperative Programming: Lecture T-17

strcpy(s1, s2); // now copy the string s2 at place of the new
 // address s1 that points to \0

strcmp
short for "string compare". compares two strings
function definition: int strcmp(const char *s1, const char *s2)
compares s1 with s2. If equal returns 0, if alphabetically s1<s2 returns a negative number, or returns a
positive number if s1>s2.

Example:
 char n[30], m[30];
 int cmp;

 strcpy(n, "Benfica");
 strcpy(m, "Sporting");
 cmp = strcmp(n, m);
 printf("%s\n", n);
 if (cmp==0)
 printf("strings are equal");
 else
 if (cmp>0)
 printf("%s is after %s", n, m);
 else
 printf("%s is before %s", n, m);
output
 Benfica is before Sporting

The function strcmp could be implemented by something like the following
 // possible implementation of strcmp
while ((*s1==*s2) && (*s1!='\0')) // still equal and not end-of-string?
{
 s1++; // move pointer s1 one place
 s2++; // move pointer s2 one place
}
return((int) *s1 - *s2); // return difference between contents of s1 and s2

strlen
short for "string length". Returns the number of characters in the string (not counting \0)
function definition: int strlen(const char *s1)
Returns the number of characters in the string (not counting \0)
Example:
 char n[30];
 strcpy(n, "Benfica");
 printf("%s has %d characters", n, strlen(n));
output
 Benfica has 7 characters

The function strlen could be implemented by something like the following
cnt=0;
while (*s1 != '\0')
{
 cnt++;
 s1++;
}

Imperative Programming: Lecture T-17

return(cnt);

strstr
short for "string string". Returns the position of a string in another string.
function definition: char *strstr(const char *s1, const char *s2)
Returns a pointer (char array) to the position of text s2 in text s1.

Example:
 char n[30];
 char *p;
 strcpy(n, "Benfica");

 p = strstr(n, "fic");
 printf("%s", p);
output
 fica

Arrays of strings

Arrays of strings are therefore arrays of arrays of char:
For instance, if we want to store the names of three footbal teams of Portugal, we might do this with
 char n[3][10];
The picture below shows how the names can be stored in this array of strings.

for (i=0; i<3; i++)
 printf("%s\n", n[i]);
output:
 Benfica
 Sporting
 Porto

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Imperative Programming: Lecture T-17

Peter Stallinga. Universidade do Algarve, 29 November 2002

Imperative Programming: Lecture T-18

Lecture 18: struct

struct

In the lecture 13 we learned how an array can store variables of the same type in a nicely ordered, indexed
way, like in a file cabinet with in each drawer the same type of information. If we want to group variables
together that are not of the same type, we can do this in a struct.

The three file cabinets store things of the
same type, just like arrays. The left one

could be "bytes", the middle one
"integers" and the right one "reals".

The file cabinet in the center is used for
storing things of mixed type. In the same

way, a struct is used for storing variables
of different type, integers, real, or

whatever, all together in the same box.

 A struct is a set of variables of mixed type.

Declaring a struct

A visualization of a struct, namely a motley set
of variables. Each variable inside a struct is

called a field. Here we have 5 fields: an int (b),
a float (f), a char (c), a single array of floats (r)
and a double array of doubles (m).

Imperative Programming: Lecture T-18

To declare a struct we do the following

struct {

 type1 item1;

 type2 item2;

 |

 typeN itemN;

} name;
with
name: the name for the variable holding the struct.
item1..itemN: the name for the various fields in the struct. These have the same rules as the other
identifiers for variables, functions, etc. Note that we can put as many fields in the struct as we want, with
any combination of types.
type1..typeN: the type of the fields of the struct. This can be any type of variable that we know, including
structs!

As an example, the definition of a struct containing the information of a student might have fields for
name, year, and tuition fees paid:

 struct {
 char name[20];
 int year;
 int propinas;
 } student;

This struct can only contain the information of a single student. Later we will see how to make an array of
structs.

Using a struct

To access a struct we use the format

 name.field
For example, to assign values to the struct student we can do the following

 strcpy(student.name, "Peter Stallinga");
 student.year = 2002;
 student.propinas = 1;

for the explanation of the function strcpy, see the lecture on strings.
Another example:

 struct {

Imperative Programming: Lecture T-18

 float x;
 float y;
 } coordinate;

 coordinate.x = 1.0;
 coordinate.y = 0.0;

This is not exactly a set of variables of mixed type, so in principle we could also do this with an array:

 float coordinate[2];

 coordinate[0] = 1.0;
 coordinate[1] = 0.0;

but, the first version, with the struct is more logical.
Another example:

 struct {
 char rua[20];
 int numero;
 int andar;
 char porta;
 } address;

 strcpy(address.rua, "Rua Santo Antonio");
 address.numero = 34;
 address.andar = 3;
 address.porta = 'E';

 printf("%s %d", address.rua, address.numero);
 printf("%d %c", address.andar, address.porta);

Rua Santo Antonio 34
3 E

Arrays of structs, structs of arrays

The above examples use simple structs. With the information of the lecture on arrays (lecture 13),
however, we know how to build an array that can store the information of many equal objects of any type,
even structs. Let's build an array of 2000 students:
(Question: How many bytes does this variable occupy in memory? Answer at the end)

 struct {
 char name[20];
 int year;
 int propinas;
 } students[2000];

Imperative Programming: Lecture T-18

 i = 1055;
 strcpy(students[i].name, "Peter Stallinga");
 students[i].year = 2002;
 students[i].propinas = 1;

Note the structure of arrays of structs. students is an array of structs, therefore, students[i] is one of
these structs and if we want to assign something to a field we use the period and the fieldname, so
students[i].year is an int containing the year of student number i.
Wrong syntax would be students.year[i] (we could use this if we had a single struct students
containing a field year that is an array)
Also wrong: students.[i]year, which doesn't make sense at all. Be careful where you put the dots.

Later we will see that we can much more easily declare variables of type array of structs (see lecture 19).

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.
Answer to the question in the text: 2000 x (20+2+2) = 48000 bytes.

Peter Stallinga. Universidade do Algarve, 28 November 2002

Imperative Programming: Lecture T-19

Lecture 19: Defining new types and structs

Type

Sometimes it is nice to be able to define a new type of variable to be used later in the program. Just to
have a more readable code, or to avoid having to retype code many times. Defining new variable types
can be done with the word typedef.

 typedef description
typename;

with typename the name we want to give to the type and decription any type of variable we have
learned until now, including arrays, pointers and all the simple variable types.

Examples:

 typedef float real;
This is useful for people that are used to programming in PASCAL. After writing the line above, we can
use variables of type real, just like in PASCAL.Variables of 'type' real will be translated by the compiler
into variables of type float.

 typedef float floatarray[10];
Defines a new type of variable. The new type is called floatarray and a variable of this type will be equal
to an array of 10 floats.

Note that a definition of a new type does not create a variable! It does not save
space in memory and it does not assign a name to a variable. It is just a description of a type that we can
use later in declaring a variable.

... defining new boxes for variables.

Using a new type

After the definition of a type, we can declare variables of this type:

 typename varname;

Imperative Programming: Lecture T-19

with varname the name of a new variable and the type of this variable is typename, as decribed before.
After the declaration we can use the variable as if it were declared in the normal way.

Examples:
after the declaration of the new type typedef float real; we can use
 real x;
This looks already much more like PASCAL (in PASCAL it would be "Var x: real")

 floatarray ra;
And in the code we can use this array:
 ra[1] = 2.68;
This is completely equivalent with
 float ra[10];
 ra[1] = 2.68;

More examples
/* example with typedef */

/* definig a new type of variable: */
typedef int ra[6];
/* declare two global variables: */
ra x;
int y[7];

int AreEqual(ra r)
 /* Note that the definition can also be used for parameters */
{
 if (r[0]==r[1])
 return(1);
 else
 return(0);
}

void main()
{
 x[1] = 1;
 x[2] = 0;
 if AreEqual(x)
 printf("First two elements are equal");
 else
 printf("First two elements are different");
 y[1] = 1;
 y[2] = 0;
 /* The following instruction is bad code, because the type of value we pass to
 the function is different than the type of value the function expects: *\
 AreEqual(y);
}

#include <stdio.h>

typedef struct {
 hour, minute, second: integer;
} time;

Imperative Programming: Lecture T-19

void showtime(time t);
 /* Will show the time in format h:m:s */
{
 printf("%d:%d.%d\n", t.hour, t.minute, t.second);
}

void main()
{
 time atime;

 atime.hour = 23;
 atime.minute = 16;
 atime.second = 9;
 showtime(atime);
}

struct of structs:

typedef struct {
 int day, month, year;
} date;

typedef struct {
 int hour, minute, second;
} time;

typedef struct {
 time dattime;
 date datdate;
} dateandtime;

dateandtime x;

x.dattime.hour = 1;

x is a variable of type dateandtime which is a struct
containing two fields. One field is dattime which is
of type time. The other field is of type date. One of
the fields of the struct time is hour which is an int.

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 30 November 2002

Imperative Programming: Lecture T-20

Lecture 20: Files

Output to File

Today we are going to learn how to read from files and
write to file. As an example we will only learn how to read and write text files, files where the infomation is stored in
ASCII format. Such files differ from binary format because they are also readable by humans. We already are using
with text files, because all our programs written in the practical lessons are of this type.
These files can be placed on floppy disks, on the harddisk, or even on CD-ROMs (in which case they can - of course -
only be read and not written).

Keywords

The following keywords are related to file access:

 FILE
 fopen()
 fclose()
 fscanf()
 fprintf()

 feof()
 fputs()
 fgets()
 fputc()
 fgetc()

These are defined in the library <stdio.h>, which we should therefore include in the beginning of our program.

Declaring a variable for file access:

Before we can open a file and have access to it (either reading or writing) we have to declare a so-called "handle" to it.
This is a variable that stores information about the status of the file. In C we can declare a text file in the following
way:

 FILE *filehandle;
With filehandle the variable that will store the pointer to the information. This is NOT equal to the actual name of
the file, as we will see in a moment. The place to declare this is together with the other variables.
Example:
 FILE *f;
This makes f a pointer to a file handle.
Without ever having to worry about it (no need to remember this), the actual variable type FILE is
typedef struct{
 short level;
 unsigned flags;
 char fd;
 unsigned char hold;
 short bsize;
 unsigned char *buffer, *curp;
 unsigned istemp;

Imperative Programming: Lecture T-20

 short token;
} FILE;
For more information, look in your compilers help.

Opening a file

Inside the program we open the file with the <stdio.h> function fopen()

fopen()
short for "file open". opens a file.
function definition: FILE *fopen(const char *filename, const char *mode)
Opens a file. returns 0 if unsuccesful.

fopen() returns a pointer to a FILE (which we can assign to our variable of type FILE-pointer above).
fopen() takes two parameters, both strings (pointers to char). The first one is the name of the file and the second one
is the way it should be opened, for reading ("r"), for writing ("w"), or for appending ("a").
Examples:
to open a file named "OLA.TXT" for reading we use
 FILE *f;
 f = fopen("OLA.TXT", "r");
to open a file named "output.asc" for writing we can use
 FILE *f;
 f = fopen("output.asc", "w");

Reading and Writing

Reading from file and wring to file is done in exactly the same way as reading and writing to screen, with the only
modification that we will use fscanf() instead of scanf() for reading and fprintf() instead of printf() for
writing. The first parameter of these function calls have to be our file handle (for example f)

fscanf()
short for "file scan fornatted". input from file
function definition: int fscanf(FILE *stream, const char *format,)
gets fromatted input from file

fprintf()
short for "file print formatted". Formatted output to file
function definition: int fprintf(FILE *stream, const char *format, ...)
outputs to a file. returns number of characters written, EOF if unsuccesful.

Note that we can only use the fscanf instructions for files that have previously been opened for input ("r") and
fprintf is only to be used for files opened for output ("w"). Examples:
 fprintf(f, "%f", r);
 fscanf(f, "%d", opcao);

Imperative Programming: Lecture T-20

Read a variable with the keyboard Read a variable from file

Write a variable to screen Write a variable to file

Closing the file

When we are ready with the file, we must close it. This is especially the case for output files. If we forget to close the
file before ending the program, probably not all the information will be written to the file (the "buffer" will not be
emptied). To close the file we use fclose().

fclose()
short for "file close". Closes a file.
function definition: int fclose(FILE *stream)
closes a file. returns 0 if succesful.

for example:
 fclose(f);

Summary

File input and output consist of the following steps:

Imperative Programming: Lecture T-20

End-of-file testing

The following instruction can be useful

feof(filehandle): returns true if we are reading at the end of the file.
eof stands for end-of-file

Example:
 while (!eof(f))
 {
 fscanf("%s", s);
 }
which will read from the file until the end of the file is encountered.

Examples

code screen file TEST.TXT
after running the program

/* With File Output */
#include <stdio.h>

FILE *f;
char s[100];
int i;

void main()
{
 printf("Name of File:");
 scanf("%s", s);
 f = fopen(s, "w");
 for (i=1; i<=10; i++)
 fprintf(f, "%d Hello", i);
 fclose(f);
}

Name of File:
TEST.TXT

1 Hello
2 Hello
3 Hello
4 Hello
5 Hello
6 Hello
7 Hello
8 Hello
9 Hello
10 Hello

code screen file TEST.TXT before
running the program

/* With File Input */
 #include <stdio.h>

 FILE *f;
 char s[100];
 int i;

 void main()
 {
 printf("Name of File:");
 scanf("%s", s);
 f = fopen(s, "r");
 while (!feof(f))
 {
 fscanf(f, "%s", s);
 printf("%s\n", s);
 }
 fclose(f);

Name of File:
TEST.TXT
1
Hello
2
Hello
3
Hello
4
Hello
5
Hello
6
Hello
7
Hello
8

1 Hello
2 Hello
3 Hello
4 Hello
5 Hello
6 Hello
7 Hello
8 Hello
9 Hello
10 Hello

Imperative Programming: Lecture T-20

 }

Hello
9
Hello
10
Hello

The output is probably not what we would have liked. Maybe we should use the function fgets() instead to read
strings. See below.

Other file functions

Other useful file functions are

fgets()
short for "file get string". Reads a string from file.
function definition: char *fgets(char s1, int n, FILE *stream)
reads a string from file until eol (end of line), eof (end of file) or maximum of n-1 characters are read

fgetc()
short for "file get char". Reads a character from file.
function definition: int fgetc(FILE *stream)
reads a single character from file. Returns value of character if successful.

fputs()
short for "file put string". Writes a string to file.
function definition: int fputs(const char s1, FILE *stream)
writes a string to file. Returns 0 if succesful.

fputc()
short for "file pu char". Writes a character to file.
function definition: int fputc(char *s1, FILE *stream)
Writes a single character to file. returns value of character if succesful.

Quick Test

To test your knowledge of what you have learned in this lesson, click here for an on-line test.

Peter Stallinga. Universidade do Algarve, 17 December 2002

Imperative Programming: Test 2 (P. Stallinga)

Quick Test 2: Computers

1. The first computer was designed by

nmlkjBill Gates for Microsoft
nmlkjBlaise Pascal
nmlkjCharles Babbage
nmlkj IBM

2. The computer most people have at home is of the type

nmlkj Supercomputer
nmlkjMainframe
nmlkjMinicomputer
nmlkjMicrocomputer
nmlkjMicro processor

3. Indicate for each piece of hardware what function it has

 input output storage processing

Mouse nmlkj nmlkj nmlkj nmlkj

Keyboard nmlkj nmlkj nmlkj nmlkj

Memory nmlkj nmlkj nmlkj nmlkj

Monitor nmlkj nmlkj nmlkj nmlkj

Printer nmlkj nmlkj nmlkj nmlkj

CPU nmlkj nmlkj nmlkj nmlkj

4. To translate a PASCAL program into something the computer understands we use

nmlkjA compiler
nmlkjA dictionary
nmlkjAn Operating system
nmlkjA Hard disk

Imperative Programming: Test 3 (P. Stallinga)

Quick Test 3: Units of Information / Memory

1. The smallest unit of information is called

nmlkjA bit
nmlkjA byte
nmlkjA nibble
nmlkjAn integer

2. The smallest unit of information that can be
addressed independently is

nmlkjA bit
nmlkjA byte
nmlkjA nibble
nmlkjAn integer

3. 1101 in the binary system is in the decimal
system equal to

nmlkj 1101
nmlkj 15
nmlkj 13
nmlkjD

4. 2A in the hexadecimal system is in the
decimal system equal to

nmlkj 2A
nmlkj 42
nmlkj 20
nmlkj 0

5. The most common way to code text is

nmlkj binary
nmlkj hexadecimal
nmlkj decimal
nmlkjASCII

6. How much information can be stored
approximately on a standard floppy disk

nmlkj 1 byte: one ASCII letter
nmlkj 1 kilobyte (1 kB): a quarter of a page in ASCII

format
nmlkj 1 megabyte (1 MB): a book in ASCII format
nmlkj 1 gigabyte (1 GB): a small library in ASCII

format

Imperative Programming: Test 4 (P. Stallinga)

Quick Test 4: Introduction to C

1. Indicate for each of these identifiers if they are valid

 valid not valid explanantion

birthday8 nmlkj nmlkj

1shot nmlkj nmlkj

hot? nmlkj nmlkj

OLD_TIME nmlkj nmlkj

down.to.earth nmlkj nmlkj

2. In C we write comment

nmlkj after "REM"
nmlkj in between "{" and "}"
nmlkj after "//"
nmlkj after "comment"

Imperative Programming -Test 5 (P. Stallinga)

Quick Test 5: Variables

1. The use of \n in printf

nmlkj is used for output to the printer.
nmlkj signifies the end-of-string.
nmlkj puts the cursor on the beginning of the next

line.
nmlkj is used for specifying the format of int.

2. To store complete values we use variables of
the type

nmlkj pointer
nmlkj int, or long int
nmlkj float or double
nmlkj string

3. The range of an int is

nmlkj 0 .. 255
nmlkj 0 .. 65535
nmlkj -32768 .. 32767
nmlkj -2147483648 .. 2147483647

4. Declaring a variable means

nmlkjReserving space in memory and associating a
name to it.
nmlkjAssigning a name and a value
nmlkj Initializing a variable
nmlkj Showing its value on the screen

5. In C, variables

nmlkj are all set to 0 at the beginning of the program
nmlkj are declared by their first use
nmlkj have to be assigned a value at the time of

declaration
nmlkj have unpredictable values at the start of the

program

6. For highest-precision floating-point
calculations, we use variables of the type

nmlkj boolean
nmlkj float
nmlkj double
nmlkj long double

Imperative Programming: -Test 6 (Peter Stallinga)

Quick Test 6: Assignment, Input and Math

1. When we want to assign a value of 8.3 to a
variable r we do this with

nmlkj r = 8.3;
nmlkj r := 8.3;
nmlkj r == 8.3;.
nmlkj 8.3 -> r;

2. After the assignment of question 1, which of the
following lines of C will produce
 8.3000

nmlkj printf(8.3000);
nmlkj printf(6*r,4);
nmlkj printf(r:6:4);
nmlkj printf("%6.4f", r);

3. What is wrong with the following program?

main()
{
 float x;
 double c = 1.0;

 x*x = 2*c;
}

nmlkjA constant cannot change a value
nmlkj The left side of the = can only contain a

(single) variable
nmlkjVariable x is not well defined
nmlkj The right side of = cannot contain expressions

4. What is the output of the next program

main()
{
 double x;
 double C = 1.0;

 x = C + 1.0;
 x = 2;
 x = x + 3.0;
 printf("%4.1f", x);
}

nmlkj 7.0
nmlkj 5.0
nmlkj 3.0
nmlkj 1.0

5. What is the result of the expression "33 /
2"?

nmlkj 1.5
nmlkj 16
nmlkj 16.5
nmlkj 1

6. What is the result of the expression "33 %
2"?

nmlkj 1.5
nmlkj 16
nmlkj 16.5
nmlkj 1

7. What is priority of the operators +, * and (..)

nmlkj first + then * then (..)
nmlkj first * then + then (..)
nmlkj first (..) then * then +
nmlkj first (..) then + then *

8. What is the result of the expression
 "1.0 + 2.0 * 3.0 - 6.0 / 2.0"?

nmlkj 4.0
nmlkj 1.5
nmlkj 14
nmlkj 9.0

Imperative Programming: -Test 7 (Peter Stallinga)

Quick Test 7: if ... else ...

1. Which is not a valid comparison in C:

nmlkj (a = b)
nmlkj (a != b)
nmlkj (a == b)
nmlkj (a > b)

2. The proper syntax for simple branching is

nmlkj if (condition) then
 instruction;
nmlkj case condition
 instruction;
nmlkj if (condition)
 instruction;
nmlkj case condition of
 instruction;

3. What is displayed when the following program is
executed?

main()
{
 int a, b, c, d;

 a = 5; b = 3; c = 99; d = 5;
 if (a>6) printf("A");
 if (a>b) printf("B");
 if (b==c)
 {
 printf("C");
 printf("D");
 }
 if (b!=c) printf("E"); else printf("F");
 if (a>=c) printf("G"); else printf("H");
 if (a<=d)
 {
 printf("I");
 printf("J");
 }
}

Check I give up

4. What will be the output of the
following program?

main()
{
 int a=1;

 if (a>0)
 printf("The value of a ");
 printf("is larger than zero");
 else
 printf("The value of a ");
 printf("is less than zero");
}

nmlkj The value of a is larger than
zero
nmlkj The value of a is less than zero
nmlkj The structure of the program is wrong.

We should group instructions with {..}
nmlkjDepends on the value of a.

Imperative Programming: Test 8 (Peter Stallinga)

Quick Test 8: Boolean Algebra / switch

1. What will be the output of the following
program?
main()
{
 double a, b;
 double c = 10.0;

 a = 9.0; b = 2.0*c;
 if ((a>0) || (b>0))
 printf("Fixe!");
 else
 printf(" Uma pena");
}

nmlkj Fixe!
nmlkj Fixe! Uma pena
nmlkj Uma pena
nmlkj the program doesn't have output!

2. What is wrong with the following program
main()
{
 double a;
 double c = 2;

 a = 3.0;
 switch (a+1.0)
 {
 case 1: printf("Fixe!\n");
 break;
 case c:
 printf("Cool!\n");
 printf("Ingles");
 break;
 case 3: printf("Super!");
 break;
 default: printf("Language?\n");
 }
}

nmlkj a) switch cannot contain expressions (a+1.0)
nmlkj b) switch cannot have expressions of type float

(a+1.0)
nmlkj c) In the structure switch we cannot use

variables (case c:)
nmlkj d) Both b) and c)

3a. What will be the result of the Boolean calculation
(41 | 35)?

Check
Help

More help
I give up

3b. What will be the result of the Boolean calculation
(41 & 6)?

Check
Help

More help
I give up

3c. What will be the result of the Boolean calculation
(41 && 6)?

4.
 (3*4 + 12/6*i - j*2)
is an example of

nmlkj an expression
nmlkj a condition
nmlkj an assignment
nmlkj an operation

Imperative Programming: Test 8 (Peter Stallinga)

Check
Help

More help
I give up

Imperative Programming: Test 9 & 10 (Peter Stallinga)

Quick Test 9/10: Loops

1. In which type of loop is the instruction
executed at least once?

nmlkj for
nmlkjwhile
nmlkj do-while
nmlkj Such a loop doesn't exist

2. We want to write a program that asks the
user to supply a number. The program then
should show all the prime numbers up to that
number. In this case, the best loop to use is

nmlkj for
nmlkjwhile
nmlkj do-while
nmlkjOther structure

3. What are the two basic rules for nesting of loops?

1:
2:

Help Correct answer

4. What is the diference
between loops of type while and
do-while?

nmlkj while is for integer numbers,
do-while is for variables of
floating point type.
nmlkj do-while is for integer

numbers, while is for variables
of floating point type.
nmlkj In loops of type do-while the

condition is checked in the
beginning, whereas in loops of
type while the condition is
checked at the end.
nmlkj In loops of type while the

condition is checked in the
beginning, whereas in loops of
type do-while the condition is
checked at the end.

5. What is wrong with the following code?
x = 0.0;
while (x<10.0)
 {
 y = x*x;
 z = x*y;
 printf("The square of %f is %f", x,
y);
 printf("The cube of %f is %f", x, z);
 }

nmlkj This loop will never finish
nmlkjWe should use a loop of do-while instead.
nmlkjWe should use a for-loop instead.
nmlkj The condition cannot contain variables of type

float.

6. We want to write a program that asks the user
to choose a type of calculation or to exit the
program (1=adding, 2=subtracting, 0=finish). It
has to continue doing this forever (except, of
course when the user selects 0). In this case, the
best loop to use is

nmlkj for
nmlkjwhile
nmlkj do-while
nmlkjOther structure

Imperative Programming: Test 11 & 12 (Peter Stallinga)

Quick Test 11,12: Modular Programming

1. What word in C indicates that the
function will not return anything?

Check Correct Answer

2. What are the advantages of writing modules

1:
2:

Correct Answer

3. What will be the result of the next program?
#include<stdio.h>
void write_N(float r, int n)
{
 printf("%f" ,r);
}

void main()
{
 float x;
 x = 10.0;
}
nmlkj 10.0
nmlkj r
nmlkj x
nmlkj This program doesn't have output. We forgot to

CALL the function!

4. Why we don't have to initialize a
parameter?

nmlkjA parameter cannot change its value.
nmlkj The initialization comes from the function

call.
nmlkj Parameters are automatically set to 0.
nmlkjNot true! Parameters are like normal

variables and have to be initialized in the
beginning of the function.

Imperative Programming - Test 14 (Peter Stallinga)

Quick Test 14: Pointers
1. How to declare a pointer to an int?

nmlkj int *a;
nmlkj int a*;
nmlkj int &a;
nmlkj int a&;

2. How to attribute the address of variable x to
pointer p?

nmlkjDepends on the type of x.
nmlkj p = *x;
nmlkj p = &x;
nmlkj p = ^x;

3. Assume b is a variable of type "pointer to
int";
How to put a value of 0 in b?

Check Correct Answer

4. What happens if we forget to initialize a
pointer?

nmlkj The result will be 0.
nmlkj The compiler will warn us.
nmlkj The program will crash.
nmlkj The pointer is automatically initialized.

5. What is wrong in the following code?

 double *p;
 int i;
 p = &i;
 *p = 10.0;

nmlkjWe mixed * with &.
nmlkj *p = 10.0; will overwrite other variables or

code.
nmlkj p = &i; will generate an error.
nmlkjNothing is wrong here.

6. What are the advantages of pointers

1:
2:

Correct Answer

Imperative Programming: Test 15 (Peter Stallinga)

Quick Test 15: Scope of variables, passing by value vs.
passing by reference

1. What is the scope of each object in the
following program
float a;

void proc1(float b)
{
 float c;
 int d = 10;

 c = b+ (float) d;
 printf("%f", c);
}

float proc2(float *e)
{
 float f = 20.0;

 return(*e+f);
}

float g;

void main()
{
 float h;

 a = 10.0;
 proc1(a);
 proc2(&a);
}

 local global parameter neither
a nmlkj nmlkj nmlkj nmlkj

b nmlkj nmlkj nmlkj nmlkj

c nmlkj nmlkj nmlkj nmlkj

d nmlkj nmlkj nmlkj nmlkj

e nmlkj nmlkj nmlkj nmlkj

f nmlkj nmlkj nmlkj nmlkj

g nmlkj nmlkj nmlkj nmlkj

h nmlkj nmlkj nmlkj nmlkj

2. Consider the program below
int x;

void show(int *a)
{
 printf("%d ", *a);
 *a = *a + 1;
}

void main()
{
 x = 0;
 printf("%d ", x);
 show(&x);
 printf("%d ", x);
}

The procedure is called using the technique of
nmlkj Passing by value
nmlkj Passing by reference

And, hence the output will be

Correct Answer

3. What will be the output of the next program?

include<stdio.h>
/* double names */
int x;

void show()
{
 int x;

 x = 1;
 x = x*x;
 printf("%d ", x);
}

void main()
{
 x = 0;
 show;
 printf("%d ", x);
}

nmlkjCannot have two identical names for variables!
nmlkj 0 0
nmlkj 1 0

Imperative Programming: Test 15 (Peter Stallinga)

nmlkj 0 1
nmlkj 1 1

Imperative Programming: Test 16 (Peter Stallinga)

Quick Test 16: Recursive Programming
Consider the following program:

#include <stdio.h>
float a;

float XfuncN(float x, int n)
{
 float c;

 c = 0.0;
 if (n==0)
 return(1.0)
 else
 return(x*XfuncN(x, n-1));
}

void main()
{
 printf("%0.1f", XfuncN(3.0, 3));
}

1. What is the output of the program?

Check Correct Answer

2. How many copies of the local variable c exists
at maximum?

Check Correct Answer

Imperative Programming: Test 16b (Peter Stallinga)

Quick Test 16 extra: Recursive Programming

Consider the following program:

#include <stdio.h>
#include <string.h>

int func(char *p)
{
 int c;

 c = 0;
 if (*p == '\0')
 return(0);
 else
 {
 p++;
 return(1 + func(p));
 }
}

void main()
{
 char a[20];

 strcpy(a, "Ola");
 printf("%d", func(a));
}

1. What is the output of the program?

Check Correct Answer

2. How many copies of the local variable c exist
at maximum?

Check Correct Answer

Imperative Programmming: Test 18 (Peter Stallinga)

Quick Test 18: Arrays and Structs
1. What is the difference between an array
and a struct?

nmlkjAn array can store only countable things,
whereas a struct can store anything.
nmlkjA struct can only store countable things,

whereas an array can store anything.
nmlkjArrays are for combining variables of

different type, structs store variables of the same
type.
nmlkj Structs are for combining variables of

different type, arrays store variables of the same
type.

float maximum(float a, b)
{
 float max;

 if (a>b)
 max = a;
 else
 max = b;

}
2. How to let this function return the value of
max to the calling instruction?

nmlkjNothing, this is done automatically.
nmlkj return (max);
nmlkj maximum = max;
nmlkj This function has no output and will not return

anything

struct {
 struct {
 float z[10];
 int i[3];
 } x;
 struct {
 float r;
 double p;
 } y;
} a[10];

3. How to assign a value of 0 to (the first) i of this
program?

Check Correct Answer

4. We want to make a database with
the information of 1000 students with
their name and year. We can do this
best with a variable

nmlkj struct {
 int number;
 char name[20];
 int year;
 } a;
nmlkj struct {
 int number;
 char name[20];
 int year;
 } a[1000];
nmlkj struct {
 int number[1000];
 char name[1000][20];
 int year[1000];
 } a;
nmlkj struct {
 int number[1000];
 char name[1000][20];
 int year[1000];
 } a[1000];

Programação Imperativa: Teste 19 (Peter Stallinga)

Quick Test 19: typedef
1. What is typedef used for?

nmlkj For typing text on the screen.
nmlkj For defining a new type of variable.
nmlkj For making combinations of arrays and records.
nmlkj For declaring variables of mixed types.

typedef float b;

b = 3.1;
2. Why doesn't the above code work?

nmlkjWe should use 'typedef b float' instead.
nmlkj float is already defined.
nmlkj The syntax is wrong, we should use 'type'

instead.
nmlkj typedef only specifies a type for variables to

be declared later and doesn't create a variable
itself.

typedef struct {
 struct {
 float x[10];
 int y[3];
 } ri;
 struct {
 float v;
 double w;
 } rd;
 end;
} mystructs[10];

mystructs b;

3. How to assign a value of 0 to a (the first) y of this
program?

Check Correct Answer

4. What will be the output of the next
code?
typedef float reals[10];

void WriteIt(reals r)
{
 printf("%f\n", r[1]);
}

void main()
{
 int x[10];

 x[1] = 3;
 WriteIt(x);
}

nmlkjUndetermined. We forgot to initialize the
array r!
nmlkj 3.0
nmlkjNothing; type mistmatch in calling the

function.
nmlkj 3

