
6 This calculation is done for VDD = 1 V. The functionality of the circuit does not depend on
the exact value of VDD.
Start with Vx = 1 V, Vy = 0, Vz = 1 V and the capacitor empty, QC = 0. The resistor feels
a voltage drop Vx − Vy = 1 V and a current will flow through it. This current can only come
from the output of Schmitt Trigger H2 (remember that they are made of opamps) and thus
passes through the capacitor, charging it. Initially I = ∆VR/R = 1/R, but the charging of
the capacitor makes it having a voltage drop; the voltage at x is therefore decreasing and
with y at a steady 0, the voltage drop across the resistor drops and the current with it. We
recognize here a classic relaxation behavior. The current will continue to increase the charge
in the capacitor in an ever-decreasing way. This, however, will not continue forever. When
the voltage at x drops below 1/3 V the first Schmitt Trigger (H1) will commutate; its output
will switch y : 0 → 1. In cascade the second Schmitt Trigger will commutate, z : 1 → 0.
At this moment we start the clock. Just before the commutation, the voltage was 1/3 V at
x and 1 V at z; a voltage drop of 2/3 V across the capacitor. Capacitors have the property
that voltage drops cannot change instantaneously (because ∆VC = Q/C and charge cannot
disappear instantaneously; it takes current and time to remove charge). Thus, immediately
after the switching of H2, the voltage at x must be Vx = Vz − 2/3 V = −2/3 V. At the other
side of the resistor there is a voltage Vy = 1 V and a current will come through the resistor
equal to I = (Vy − Vx)/R (supplied by Schmitt Trigger H1, passing through C and sinking
into H2). The situation at t = 0 is as follows:
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This current goes through the capacitor and is supplied by the output of H2. Seemingly the
current goes against the voltage (from 1 V on the right side to +5/3 V on the left side).
This is only seemingly. Don’t forget that the current in a capacitor is not proportional to
the voltage drop (as a resistor), but proportional to the time-derivative of this voltage. The
current charges the capacitor in an ever-decreasing way. A classical relaxation behavior with
for this case three boundary conditions for the voltage at x:� Initially, Vx(0) = −2/3 V.� The final voltage, if nothing further happened is, Vx(∞) = 1 V, because at this value

the current through the resistor would be zero (∆VR = Vx − Vy).� The relaxation time is τ = RC.

The solution to this exponential decay/approach is

Vx(t) = 1 − 5

3
exp(−t/RC). (145)

When Vx reaches two 2/3 V, H1 will commutate. This occurs at a time

t1 = RC ln(5). (146)
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At this moment y switches 1 → 0 and in cascade H2 switches, z: 0 → 1. We reset the clock
and start observing what happens. Again, the voltage drop in the capacitor is not affected
by the switching. Before the switch, the voltage drop was ∆VC = Vz − Vx = 0 − 2/3 V =
−2/3 V. After the switch it must be the same, so the voltage at x is Vx = Vz − ∆VC = 1 V
+2/3 V = 5/3 V. We thus have the following situation at t = 0:
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A current flows through the resistor and sinks into the output of H1. Thus, the capacitor
is discharging. Once again in a relaxation way resulting in an exponential decay/approach.
The conditions for the voltage at x are:� Initially, Vx(0) = 5/3 V.� The final voltage, if nothing further happened is, Vx(∞) = 0 V, because at this value

the current through the resistor would be zero (∆VR = Vx − Vy).� The relaxation time is τ = RC.

The solution to this exponential decay/approach is

Vx(t) =
5

3
exp(−t/RC). (147)

It continues to drop until it reaches the commutation voltage of H1, namely 1/3 V. This
happens at a time give by

t2 = RC ln(5). (148)

At this moment y switches 0 → 1 and in cascade H2 switches, z: 1 → 0 and we start a new
cycle again.
The total period is give by T = t1 + t + 2 = 2RC ln(5). To get an oscillation frequency for
the square-wave output at 10 kHz we can use values C = 1 nF and R = 31 kΩ.
Summarizing, the behavior of the circuit is as given below. The solid curve is the actual
behavior, the dashed curves are guides-to-the-eye to show where the signal would have gone
to. The horizontal dotted lines represent the switching levels, 1/3 V and 2/3 V.
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9 a) Define β ≡ R1/(R1 + R2), (1 − β) = R2/(R1 + R2). Then: Vp = βVo + (1 − β)Vi. In the
right commutation point Vi = 6 V, Vo = −10 V, and Vp = Vn:

Vn = β(−10 V) + (1 − β)(6 V) = (6 − 16β) V (152)

In the other commutation point Vi = 4 V, Vo = +10 V, and Vp = Vn:

Vn = β(10 V) + (1 − β)(4 V) = (4 + 6β) V (153)

Two equations with two unknowns. The solution is β = 1/11 (for example R1 = 1 kW and
R2 = 10 kW) and Vn = 50/11 = 4.55 V (for example R3 = 8 kW and R4 = 3 kW).
b) The input resistance is defined as ri = dVi/dIi. The input current is give as Ii = (Vi −
Vo)/(R1 + R2). For a constant output voltage, the input resistance is thus equal to R1 + R2.
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