Telecommunications

MIEET 1º ano

Communication

Communication is the activity of conveying meaningful information.*

^{*:} In the context of MIEET

Communication

(FYI) Official definition of 'Communication': *

communicate [kuh-myoo-ni-keyt] ② □ □ Origin

com·mu·ni·cate □ [kuh-myoo-ni-keyt] ② Show IPA verb,
-cat·ed, -cat·ing.

verb (used with object)

- to impart knowledge of; make known: to communicate information; to communicate one's happiness.
- to give to another; impart; transmit: to communicate a disease.
- 3. to administer the Eucharist to.
- Archaic . to share in or partake of.

verb (used without object)

- to give or interchange thoughts, feelings, information, or the like, by writing, speaking, etc.: They communicate with each other every day.
- to express thoughts, feelings, or information easily or effectively.
- to be joined or connected: The rooms communicated by means of a hallway.
- 8. to partake of the Eucharist.
- 9. Obsolete . to take part or participate.

^{*:} http://dictionary.reference.com/

Communication

- The information the 'message' itself is not interesting for MIEET (If you don't like that, please transfer to the faculty of human and social sciences)
- The '**format**' and the '**channel**' of the message are very important for MIEET
- The sender and receiver can be separated in time and space
- The sender can be the same as the receiver
- Not necessarily persons

Oral

The oldest form of communication: Oral

- Same time and place. Format: acoustic. language

Written (visual)

Written language. Clay tablets / letters /books

- Different time and/or place. Format: optical. language

I can send a letter to the other end of the world. Or I can write something in a log book, to be accessed later by me or others.

Etc.

Telecommunication

Telecommunication

- **Different** (distant) **place**, **same time**. (distant enough to not allow for direct communication)
- Telephone, television, etc.

IALP 2011, Telecom, UALg, Peter Stallinga - 7/42

Semaphores

Marine Semaphores. Smoke signals. Etc. (communications normally win the war)

Modern Telecom: electronic

Television

Modern Telecom: electronic

Telephone

Analog

Analog: A signal that is **continuous** in **time** and **amplitude**

Signal can take **any value** at **any time** (like real numbers \Re)

Analog

etc.

Analog: A signal that is **continuous** in **time** and **amplitude**

Signal can take **any value** at **any time** (like real numbers \Re)

The information in the signal is theoretically **infinite**! For example, I could use the convention (definition): 1.896719986783167 volt = "Peter Stallinga" 1.896719986783168 volt = "Pieter Stallinga" 1.896719986783169 volt = "Piter Stallinga"

Analog

Analog: A signal that is continuous in time and amplitude

Signal can take **any value** at **any time** (like real numbers \Re)

at t = 01.896719986783167 volt = "Peter Stallinga" at $t = 10^{-10}$ s 0.881763981227889 volt = "João da Silva" at $t = 2x10^{-10}$ s 4.222719817654981 volt = "Nuno Rodrigues"

Analog is perfect!

```
0..5 V:
```

1.896719986783167 volt = "Peter Stallinga"

1.896719986783168 volt = "Pieter Stallinga"

1.896719986783169 volt = "Piter Stallinga"

$$\Delta V = 10^{-15} \text{ V}$$

every $\Delta t = 10^{-10} \text{ s}$

Total 5x10¹⁵ possibilities every 10⁻¹⁰ s

Bits and possibilities

Intermezzo:

Total $5x10^{15}$ possibilities every 10^{-10} s = 2 Log($5x10^{15}$) bits / 10^{-10} s

1 bit of information has 2 possibilities, Ex. 0 or 1, yes/no, green/red, 0 volt/5 volt, man/woman

2 bits of information have 4 possibilities, Ex. 00, 01, 10, 11

3 bits of information have 8 possibilities, Ex. 000, 001, 010, 011,

100, 101, 110, 111

n bits have $2x2x2...x2 = 2^n$ possibilities

Reverse: How many bits of information if we have x possibilities?

$$m = {}^{2}\text{Log}(x)$$

Then $2^m = x$

Analog is perfect!

```
0..5 V:
```

- 1.896719986783167 volt = "Peter Stallinga"
- 1.896719986783168 volt = "Pieter Stallinga"
- 1.896719986783169 volt = "Piter Stallinga"

$$\Delta V = 10^{-15} \text{ V}$$

every $\Delta t = 10^{-10} \text{ s}$

Total 5x10¹⁵ possibilities every 10⁻¹⁰ s

= 5.2x10¹¹ b/s (520 Gb/s) (Take that, Meo/كانا المراك ال

and if we want more, we just define more levels and time points Analog is without limits!

(As long as the noise permits → Shannon [MIEET:Ftel])

Analog is better

Yes, your old record player is better than a CD player!!! There is (potentially more information on a vinyl record)*

^{*:} Except albums of '50 cents'; they contain no information whatsoever.

Digital

Why digital?

- Can be transmitted/copied without errors
- Errors can even be corrected

Digital / discrete

I'll send you 10 integer numbers, they are

No errors!

Digital / discrete

I'll send you 10 integer numbers, they are

The noise cannot be bigger than the distance between two levels

Error detection

I'll send you 10 integer numbers, they are (together with sum)

By sending additional information we can detect errors

But we don't know where the errors are

Error correction: ARQ

In case of error, just ask for the data to be sent again

sender: 10, 8, 9, 1, 8, 6, 3, 10, 7, 2, sum 64

(sender: end-of-package, please acknowledge)

channel: 10.0031, 7.4121, 8.7548, 1.0113, 8.004, 6.3456, 3.3346, 9.9981, 6.6767, 2.2981, 63.9960

received: 10, 7, 9, 1, 8, 6, 3, 10, 7, 2, sum 64

receiver sends: Error! Not acknowledge. Please send again.

ARQ (Automatic repeat request) needs **bidirectional** communication!

Things can still go wrong

- imagine there is also error in check information, such that sum is correct
- imagine the signal is lost. We receive all 0's (sum 0)

Error correction: ARQ

Examples:

(Odd) Parity check: count number of 1's in data. Send additional 1 if even, 0 if odd Example: 00001, 100110, 11111

CRC (Cyclic redundancy check):

checking the remainder of the mathematical division of data. (Parity is a special case of CRC)

Error correction: FEC (forward error correction)

FEC: Send the correction of the error anyway, before

Three bits. 1: information bit, 2: (even) parity bit, 3: correction bit (sum of I+P)

000: everything OK. No error.

Information: 0

001: No error (parity bit is OK). Correction bit is wrong

Information: 0

010: Parity check error. Correction bit tells us parity bit is wrong Information: **0**

100: Parity check error. Correction bit tells us info bit is wrong Information: **0**

011: Parity check error. Correction bit tells us info bit is wrong Information: **1**

101: Parity check error. Correction bit tells us parity bit is wrong Information: **1**

110: everything OK. No error.

Information: 1

111: No error (parity bit is OK). Correction bit is wrong Information: **1**

Error correction: FEC

Forward error correction. No request to acknowledge

FEC (forward error correction) can be used in unidirectional communication!

Examples:

- TDT (Digital Terrestrial Television)
- CD / DVD

Coding and transport of data

- 1: How the **human**-understandable information is translated into a **computer**-readable and processable signal
- (Digital/binary) bit pattern
- 2: How the digital format is translated into an **electronic** signal
- Modulation
- 3: How the electronic signal is transported
- Antennas, fiber-optic, cable, Wi-Fi

1: Bit pattern: ASCII

1: How the **human**-understandable information is translated into a **computer**-readable and processable signal

(Digital/binary) bit pattern

Example: ASCII*

- 26 letters in English alphabet
- UPPERCASE and lowercase
- Common used symbols (punctuation, math, etc.)
- Control codes (Note: ACK = acknowledge)

Total: 127 plus null character

	0	1	2	3	4	5	6	7	
0	NUL	DLE	space	0	@	Р	`	р	
1	SOH	DC1 XON	İ	1	Α	Q	а	q	
2	STX	DC2	ıı .	2	В	R	b	r	
3	ETX	DC3 XOFF	#	3	С	S	С	s	
4	EOT	DC4	\$	4	D	Т	d	t	
5	ENQ	NAK	%	5	E	U	е	u	
6	ACK	SYN	&	6	F	V	f	٧	
7	BEL	ЕТВ	1	7	G	W	g	W	
8	BS	CAN	(8	Н	Х	h	×	
9	HT	EM)	9	- 1	Υ	i	У	
Α	LF	SUB	*	:	J	Ζ	j	Z	
В	VT	ESC	+	;	K	[k	{	
С	FF	FS		<	L	-\	- 1		
D	CR	GS	-	=	M]	m	}	
E	so	RS		>	N	۸	n	~	
F	SI	US	1	?	0	_	0	del	

^{*:} American Standard Code for Information Interchange

1: Bit pattern: ASCII

Total: 128 characters / possibilities

Number of bits: 2 Log(128) = 7

 $(2^7 = 128)$

Example: 'A': 1000001 (binary) 41 (hexadecimal)* 65 (decimal)*

ASCII:

A convention agreeing which character is assigned which **bit pattern** (and value*)

ast 4 bits

First 3 bits

del

^{100 101 110 111} 001 011 0 2 3 4 5 6 7 NUL DLE 0 α 0000 space р DC1 XON SOH 0001 q DC2 STX 0010 DC3 XOFF 0011 3 ETX 3 S С S DC4 Т 0100 D 4 EOT 4 d t NAK 5 Е Ш 0101 **ENQ** е u **ACK** SYN ٧ 0110 R V 0111 7 7 W BEL **ETB** w 1000 8 Н Χ BS CAN X Υ 1001 9 HT EM. 9 У 1010 LF SUB Z 1011 В VT. ESC + Κ С FF FS ١ 1100 < D CR. 1101 GS = m E SO RS. 1110 > n 2 Ο 1111 SI US.

^{*:} See lectures on Digital Systems

1: Bit pattern: 8-bit ASCII

Modern ASCII: 8 bits

First half (00000000-01111111) standard Second half (10000000-11111111) depending on country ('page code')

Very confusing. Sending text becomes non standard

Still one of most common problems in communications (Windows still uses MS-DOS code pages; Linux uses UTF-8)

^{*:} See lectures on Digital Systems

1: Bit pattern: 8-bit ASCII, page code 860 (Pt)

	. 0	.1	.2	.3	.4	.5	.6	.7	.8	.9	. A	.в	.c	. D	.E	.F
	ç	ü	é	â	ã	à	Á	ç	ê	Ê	è	Í	Ô	ì	Ā	Â
8-	99C7	00FC	00E9	00E2	00E3	00E0	00C1	99E7	GGEA	99CA	00E8	00CD	99D4	00EC	00C3	99C2
	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
	É	À	È	ô	õ	ò	Ú	ù	Ì	Ō	Ü	¢	£	Ù	Pts	Ó
9-	00C9	99C9	99C8	00F4	00F5	00F2	GGDA	00F9	99CC	0005	00DC	00A2	00A3	00D9	20A7	00D3
	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
	á	í	ó	ú	ñ	Ñ	ā	Q	٤	Ò	-	1 2	1/4	i	«	»
A -	00E1	00ED	00F3	OOFA	00F1	99D1	ООДД	GGBA	99BF	99D2	00AC	GGBD	00BC	00A1	00AB	00BB
	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	*	**	88		4	4	-	п	3	4		7	ال	Ш	4	٦
B-	2591	2592	2593	2502	2524	2561	2562	2556	2555	2563	2551	2557	255D	255C	255B	2510
	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	L	1	т	ŀ	_	+	F	ŀ	L	F	1	┰	ŀ	=	#	<u>T</u>
c-	2514	2534	252C	251C	2500	253C	255E	255F	255A	2554	2569	2566	2560	2550	256C	2567
	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	1	₹	т	L	L	F	Г	+	+	٦	Г		_	ı		
D-	2568	2564	2565	2559	2558	2552	2553	256B	256A	2518	250C	2588	2584	258C	2590	2580
	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
	α	ß	Г	π	Σ	σ	μ	τ	Φ	Θ	Ω	δ	00	φ	ε	n
E-	03B1	00DF	0393	03C0	03A3	03C3	00B5	03C4	03A6	0398	03A9	93B4	221E	03C6	03B5	2229
	224	225	226	227	228	229	23€	231	232	233	234	235	236	237	238	239
	=	±	≥	≤	ſ	J	÷	~	0	•		√	n	2	•	NBSP
F-	2261	99B1	2265	2264	2320	2321	99F7	2248	99B9	2219	99B7	221A	207F	00B2	25A0	00A0
	240	241	242	243	244	245	246	247	248	249	25θ	251	252	253	254	255

^{*:} See lectures on Digital Systems

1: Bit pattern: 8-bit ASCII, page code 437 (Int)

	Ç	ü	é	â	ä	à	å	ç	ê	ë	è	ï	î	ì	Ä	Å
8-	99C7	00FC	00E9	00E2	00E4	00E0	00E5	00E7	GGEA	00EB	99E8	00EF	99EE	00EC	00C4	00C5
	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	145
	É	æ	Æ	ô	ö	ò	û	ù	ÿ	Ö	Ü	¢	£	¥	Pts	f
9-	00C9	99E6	9906	99F4	00F6	00F2	00FB	00F9	00FF	99D6	00DC	00A2	00A3	00A5	20A7	0192
	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
	á	í	ó	ú	ñ	Ñ	ā	Ω	٤	-	_	1/2	1/4	i	«	»
A-	00E1	00ED	00F3	00FA	00F1	00D1	GGAA	GGBA	00BF	2310	00AC	00BD	00BC	00A1	00AB	ооов
	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	8	*	88		4	=	4	П	3	4		a	1	Ш	7	٦
B-	2591	2592	2593	2502	2524	2561	2562	2556	2555	2563	2551	2557	255D	255C	255B	2510
	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	L	Т	т	ŀ	_	+	F	ŀ	Ŀ	F	工	ī	F	=	#	±
c-	2514	2534	252C	251C	2500	253C	255E	255F	255A	2554	2569	2566	2560	2550	256C	2567
	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	Т	₹	Т	L	F	F	Г	+	+	J	Г					-
D-	2568	2564	2565	2559	2558	2552	2553	256B	256A	2518	250C	2588	2584	258C	2590	2580
	208	209	210	211	212	213	214	215	216	217	218	219	22€	221	222	223
	α	ß	Г	π	Σ	σ	μ	τ	Φ	Θ	Ω	δ	∞	φ	ε	n
E-	03B1	00DF	0393	03C0	03A3	03C3	00B5	03C4	03A6	0398	03A9	03B4	221E	03C6	03B5	2229
	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	=	±	≥	≤	ſ	J	÷	≈	0	•		√	n	2	•	NBSP
F-	2261	00B1	2265	2264	2320	2321	99F7	2248	99B9	2219	99B7	221A	207F	00B2	25A0	99A9
	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-В	-с	-D	-Е	-F

Remember: we are sending bit patterns and not characters. How the receiver is interpreting them is just a matter of convention!

^{*:} See lectures on Digital Systems

2: Electronic layer: RS232 (serial)

- '0', named 'SPACE': Voltage larger than +3 V
- '1', named 'MARK': Voltage below -3 V
- 7 bits sent in reverse order (LSB first)
- A start bit '0' added in the beginning
- parity bit added at end of character
- stop bit(s) '1' added at end of pattern

9600: 7E1 'i' (#105, \$69): 1101001

2: Electronic layer: RS232 (serial)

```
"9600E71"
```

means: 9600 bits/s (including start/stop/parity bits)

E = Even parity

7 = 7 Data bits

1 = 1 stop bit

9600: 7E1 'i' (#105, \$69): 1101001

2: Electronic layer: MoDem

Telephone lines are noisy. These RS232 bit patterns will arrive badly at other end (>1 km). We will modulation techniques: Sender will **Mo**dulate it. $1 \rightarrow 1$ kHz, $0 \rightarrow 5$ kHz

Receiver will **Dem**odulate it. 1 kHz \rightarrow 1, 5 kHz \rightarrow 0

MoDem: Modulator-Demodulator

2: Electronic layer: MoDem

MoDem: Modulator-Demodulator

2: Electronic layer: MoDem

Telephone signal has bandwidth of 3 kHz (LoFi voice has information up to that frequency)

Maximum bitrate: 2x3 kHz = 6 kb/s (Nyquist rate, f = 2B)

2: Electronic layer: MoDem, advanced

Advanced modulation techniques/ Ex. Two bits coding:

```
01 \rightarrow 1 \text{ kHz. } 12 \text{ volt}, \qquad 11 \rightarrow 5 \text{ kHz. } 6 \text{ volt}, \\ 10 \rightarrow 1 \text{ kHz, } 6 \text{ volt} \qquad 00 \rightarrow 5 \text{ kHz, } 12 \text{ volt}
```


Maximum bitrate (Shannon-Hartley theorem): $f = B \times {}^{2}\text{Log}(1 + S/N)$

3: Transport. Cables, etc.

Earlier communication used **existing** telephone technology Telephone landlines

- Cheap (because already exists)
- Very noisy (need for MoDem techniques)
- End of 'pay-per-call' idea (computers 24 hours connected)
- **Limited bandwidth** (telephone cut-off at 3 kHz; in simple protocol this would be 6 kb/s)

3: Transport. Cables, etc.

ADSL

:

:

Fiberoptics: (Nyquist rate, f = 2B)

Telephone (electrical) signal has bandwidth of 3 kHz Maximum bitrate: 2x3 kHz = 6 kb/s

Fiberoptics (electromagnetic) have bandwidth of some THz (10^{12} Hz) Maximum bitrate: $2x10^{12}$ Hz = 2 Tb/s

About a billion times faster. With one fiberoptics cable everybody in the world can effectively make a telephone call at the same time.

3: Transport. Multiplexing

Multiplexing: sharing a single physical medium by various sources/destinations

3: Transport. Multiplexing

Four ways of multiplexing:

SDM (Space division multiplexing)

Like audio cables. Many equipment connected to same amplifier.

Not really multiplexing.

TDM (Time-division multiplexing)

Sequencing 'packets' from each individual input stream, one after the other

FDM (Frequency-division multiplexing)

Sending signals in several distinct frequency ranges over that medium.

CDM (Code-division multiplexing)

Everybody talks at the same time (like GPS satellites)

3: Transport. Multiplexing

TDM (Time-division multiplexing)

Sequencing 'packets' from each individual input stream, one after

the other

FDM (Frequency-division multiplexing)

Sending signals in several distinct frequency ranges over that medium.

