Telecommunications

MIEET 1° ano

Peter Stallinga UAlg 2011

Communication

Communication is the activity of conveying meaningful information.*

*: In the context of MIEET

Communication

(FYI) Official definition of 'Communication': *

communicate [kuh-myoo-ni-keyt] ? 디) origin

com•mu•ni-cate $\sqrt{ } / 1)$ [kuh-myoo-ni-keyt] ? Show IPA verb,
-cat-ed, -cat-ing.
verb (used with object)

1. to impart knowledge of; make known: to communicate information; to communicate one's happiness.
2. to give to another; impart; transmit: to communicate a disease.
3. to administer the Eucharist to.
4. Archaic . to share in or partake of.
verb (used without object)
5. to give or interchange thoughts, feelings, information, or the like, by writing, speaking, etc.: They communicate with each other every day.
6. to express thoughts, feelings, or information easily or effectively.
7. to be joined or connected: The rooms communicated by means of a hallway.
8. to partake of the Eucharist.
9. Obsolete . to take part or participate.

Communication

- The information - the 'message' - itself is not interesting for MIEET (If you don't like that, please transfer to the faculty of human and social sciences)
- The 'format' and the 'channel' of the message are very important for MIEET
- The sender and receiver can be separated in time and space
- The sender can be the same as the receiver
- Not necessarily persons

Oral

The oldest form of communication: Oral

- Same time and place. Format: acoustic. language

Written (visual)

Written language. Clay tablets / letters /books

- Different time and/or place. Format: optical. language

I can send a letter to the other end of the world. Or I can write something in a log book, to be accessed later by me or others.

Etc.

Telecommunication

Telecommunidation

Telecommunication

- Different (distant) place, same time. (distant enough to not allow for direct communication)
- Telephone, television, etc.

Semaphores

Marine Semaphores. Smoke signals. Etc. (communications normally win the war)

Modern Telecom: electronic

Television

Modern Telecom: electronic

Telephone

Analog

Analog: A signal that is continuous in time and amplitude

Signal can take any value at any time (like real numbers $\mathfrak{\imath}$)

Analog

Analog: A signal that is continuous in time and amplitude

Signal can take any value at any time (like real numbers $\mathfrak{\imath}$)

The information in the signal is theoretically infinite!
For example, I could use the convention (definition):
1.896719986783167 volt = "Peter Stallinga"
1.896719986783168 volt = "Pieter Stallinga"
1.896719986783169 volt = "Piter Stallinga" etc.

Analog

Analog: A signal that is continuous in time and amplitude

Signal can take any value at any time (like real numbers $\mathfrak{\imath}$)
at $t=0$
1.896719986783167 volt = "Peter Stallinga"
at $t=10^{-10} \mathrm{~s}$
0.881763981227889 volt = "João da Silva"
at $t=2 \times 10^{-10} \mathrm{~s}$
4.222719817654981 volt = "Nuno Rodrigues"

Analog is perfect!

0.5 V :
1.896719986783167 volt = "Peter Stallinga" 1.896719986783168 volt = "Pieter Stallinga" 1.896719986783169 volt = "Piter Stallinga"
$\Delta V=10^{-15} \mathrm{~V}$
every $\Delta t=10^{-10} \mathrm{~s}$
Total 5×10^{15} possibilities every $10^{-10} \mathrm{~s}$

Bits and possibilities

Intermezzo:

Total 5×10^{15} possibilities every $10^{-10} \mathrm{~s}$
$={ }^{2} \log \left(5 \times 10^{15}\right)$ bits $/ 10^{-10} \mathrm{~s}$
1 bit of information has 2 possibilities, Ex. 0 or 1 , yes/no, green/red, 0 volt/5 volt, man/woman
2 bits of information have 4 possibilities, Ex. 00, 01, 10, 11
3 bits of information have 8 possibilities, Ex. 000, 001, 010, 011, 100, 101, 110, 111
n bits have $2 \times 2 \times 2 \ldots \times 2=2^{n}$ possibilities
Reverse: How many bits of information if we have x possibilities?

$$
m={ }^{2} \log (x)
$$

Then $2^{m}=x$

Analog is perfect!

$0 . .5 \mathrm{~V}$:
1.896719986783167 volt = "Peter Stallinga"
1.896719986783168 volt = "Pieter Stallinga"
1.896719986783169 volt = "Piter Stallinga"
$\Delta V=10^{-15} \mathrm{~V}$
every $\Delta t=10^{-10} \mathrm{~s}$
Total 5×10^{15} possibilities every $10^{-10} \mathrm{~s}$
$={ }^{2} \log \left(5 \times 10^{15}\right)$ bits $/ 10^{-10} \mathrm{~s}$

Analog Signal

and if we want more, we just define more levels and time points
...... Analog is without limits!
(As long as the noise permits \rightarrow Shannon [MIEET:Ftel])

Analog is better

Yes, your old record player is better than a CD player!!! There is (potentially more information on a vinyl record)*

*: Except albums of '50 cents'; they contain no information whatsoever.

Digital

Why digital?

- Can be transmitted/copied without errors
- Errors can even be corrected

Digital / discrete

I'll send you 10 integer numbers, they are
$10,8,9,1,8,6,3,10,7,2$
Information I am trying to transmit
Modulation \rightarrow volt \quad + noise caused by channel
$10.0031,7.9951,8.7548,1.0113,8.004$
$6.3456,3.3346,9.9981,6.6767,2.2981<$ How the information arrived
10,
Detection. Volt \rightarrow number
How it is interpreted

No errors!

Digital / discrete

I'll send you 10 integer numbers, they are
$10,8,9,1,8,6,3,10,7,2$
Information I am trying to transmit
10.0031, $7.4121,8.7548,1$.
$6.3456,3.3346,9.9981,6.6$
$10,7,9,1,8,6,3,10,7,2$

How it is interpreted

The noise cannot be bigger than the distance between two levels

Error detection

I'll send you 10 integer numbers, they are (together with sum)
$10,8,9,1,8,6,3,10,7,2$, sum 64
Information I am trying to transmit
10.0031, 7.4121, 8.7548, 1.0113, 8.004, $6.3456,3.3346,9.9981,6.6767,2.2981,63.9960$ How the information arrived

10, 7, $9,1,8, \mathbf{b}, 3,10,7,2$, sum 64
How it is interpreted

By sending additional information we can detect errors
But we don't know where the errors are

Error correction: ARQ

In case of error, just ask for the data to be sent again

sender: 10, 8, 9, 1, 8, 6, 3, 10, 7, 2, sum 64 (sender: end-of-package, please acknowledge)
channel: 10.0031, 7.4121, 8.7548, 1.0113, 8.004, 6.3456, 3.3346, 9.9981, 6.6767, 2.2981, 63.9960
received: 10, 7, 9, 1, 8, 6, 3, 10, 7, 2, sum 64 receiver sends: Error! Not acknowledge. Please send again.

ARQ (Automatic repeat request) needs bidirectional communication!

Things can still go wrong

- imagine there is also error in check information, such that sum is correct
- imagine the signal is lost. We receive all 0's (sum 0)

Examples:

(Odd) Parity check: count number of 1 's in data. Send additional 1 if even, 0 if odd
Example: 00001, 100110, 11111
CRC (Cyclic redundancy check): checking the remainder of the mathematical division of data. (Parity is a special case of CRC)

Error correction: FEC (forward error correction)

FEC: Send the correction of the error anyway, before

Three bits. 1: information bit, 2: (even) parity bit, 3: correction bit (sum of I+P) 000: everything OK. No error.

Information: 0
001: No error (parity bit is OK). Correction bit is wrong Information: 0
010: Parity check error. Correction bit tells us parity bit is wrong Information: 0
100: Parity check error. Correction bit tells us info bit is wrong Information: 0
011: Parity check error. Correction bit tells us info bit is wrong Information: 1
101: Parity check error. Correction bit tells us parity bit is wrong Information: 1
110: everything OK. No error. Information: 1
111: No error (parity bit is OK). Correction bit is wrong Information: 1

Error correction: FEC

Forward error correction. No request to acknowledge

FEC (forward error correction) can be used in unidirectional communication!

[^0]
Coding and transport of data

1: How the human-understandable information is translated into a computer-readable and processable signal

- (Digital/binary) bit pattern

2: How the digital format is translated into an electronic signal

- Modulation

3: How the electronic signal is transported

- Antennas, fiber-optic, cable, Wi-Fi

1: Bit pattern: ASCII

1: How the human-understandable information is translated into a computer-readable and processable signal
(Digital/binary) bit pattern

Example: ASCII*

- 26 letters in English alphabet
- UPPERCASE and lowercase
- Common used symbols (punctuation, math, etc.)
- Control codes (Note: ACK = acknowledge)
Total: 127 plus null character

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	(a)	P		p
1	SOH	$\begin{aligned} & \mathrm{DC1} \\ & \mathrm{XON} \end{aligned}$!	1	A	Q	a	q
2	STX	DC2	"	2	B	R	b	r
3	ETX	$\begin{aligned} & \mathrm{DC3} \\ & \text { XOF } \end{aligned}$	\#	3	C	S	c	S
4	EOT	DC4	\$	4	D	T	d	t
5	ENQ	NAK	\%	5	E	U	e	u
6	ACK	SYN	\&	6	F	V	f	v
7	日EL	ETB		7	G	W	g	W
8	ES	CAN	$($	8	H	X	h	\times
9	HT	EM)	9	I	Y	i	y
A	LF	Sue	*	:	」	Z	j	z
B	VT	ESC	+	,	K	[k	\{
C	FF	FS		$<$	L	,	I	\|
D	CR	GS	-	$=$	M]	m	\}
E	so	RS		$>$	N	^	n	\sim
F	SI	US	/	?	0	-	0	del

*: American Standard Code for Information Interchange

1: Bit pattern: ASCII

Total: 128 characters / possibilities Number of bits: ${ }^{2}$ Log(128) $=7$
($2^{7}=128$)

Example: 'A': 1000001 (binary) 41 (hexadecimal)* 65 (decimal)*

)		000001010011100101110111									
			0	1	2	3	4	5	6	7	
	0000	0	NUL	DLE	space	0	d	P	-	p	
	0001	1	SOH	$\begin{aligned} & \mathrm{DC1} \\ & \mathrm{OON} \end{aligned}$	$!$	1	A	2	a	q	
	0010	2	-	DC2	"	2	-	R	b	r	
	0011	3	ETX	$\begin{aligned} & \mathrm{DC3} \\ & \mathrm{XOFF} \end{aligned}$	\#	3	C	5	c	s	
	0100	4	EOT	DC4	\$	4	D	T	d	t	
	0101	5	ENQ	NAK	\%	5	E	U	e	u	
0	0110	6	ACK	SYN	\&	6	F	V	f	v	
-	0111	7	EEL	ETB	'	7	G	W	g	W	
\pm	1000	8	BS	CAN	$($	8	H	X	h	\times	
$\underset{\sim}{c}$	1001	9	HT	EM)	9	I	Y	i	y	
	1010	A	LF	SUB	*	:	J	Z	j	Z	
	1011	B	VT	ESC	+	,	K	[k	\{	
g which	1100	C	FF	FS	,	$<$	L	1	।	\\|	
which	1101	D	CR	GS	-	=	M]	m	\}	
*)	1110	E	so	RS	.	$>$	N	A	n	\sim	
*	1111	F	SI	us	1	?	0	-	0	del	

ASCII:

A convention agreeing which character is assigned which bit pattern (and value*)

First 3 bits

Modern ASCII: 8 bits

First half (00000000-01111111) standard
Second half (10000000-11111111) depending on country ('page code')

Very confusing. Sending text becomes non standard

Still one of most common problems in communications (Windows still uses MS-DOS code pages; Linux uses UTF-8)

1: Bit pattern: 8-bit ASCII, page code 860 (PV)

*: See lectures on Digital Systems

1: Bit pattern: 8-bit ASCII, page code 437 (lnt)

Remember: we are sending bit patterns and not characters. How the receiver is interpreting them is just a matter of convention!

[^1]
2: Electronic layer: RS232 (serial)

- '0', named 'SPACE': Voltage larger than +3 V
- '1', named 'MARK': Voltage below -3 V
- 7 bits sent in reverse order (LSB first)
- A start bit ' 0 ' added in the beginning
- parity bit added at end of character
- stop bit(s) '1' added at end of pattern

9600: 7E1 'i' (\#105, \$69): 1101001

2: Electronic layer: RS232 (serial)

"9600E71"

means: 9600 bits/s (including start/stop/parity bits)
$\mathrm{E}=$ Even parity
$7=7$ Data bits
$1=1$ stop bit

9600: 7E1 'i' (\#105, \$69): 1101001

2: Electronic layer: MoDem

Telephone lines are noisy. These RS232 bit patterns will arrive badly at other end ($>1 \mathrm{~km}$). We will modulation techniques: Sender will Modulate it. $1 \rightarrow 1 \mathrm{kHz}, 0 \rightarrow 5 \mathrm{kHz}$

Receiver will Demodulate it. $1 \mathrm{kHz} \rightarrow 1,5 \mathrm{kHz} \rightarrow 0$
MoDem: Modulator-Demodulator

2: Electronic layer: MoDem

MoDem: Modulator-Demodulator

2: Electronic layer: MoDem

Telephone signal has bandwidth of 3 kHz (LoFi voice has information up to that frequency)

Maximum bitrate: $2 \times 3 \mathrm{kHz}=6 \mathrm{~kb} / \mathrm{s}$ (Nyquist rate, $f=2 B$)

2: Electronic layer: MoDem, advanced

Advanced modulation techniques/ Ex. Two bits coding: $01 \rightarrow 1 \mathrm{kHz} .12$ volt,
$11 \rightarrow 5 \mathrm{kHz} .6$ volt,
$10 \rightarrow 1 \mathrm{kHz}, 6$ volt $\quad 00 \rightarrow 5 \mathrm{kHz}, 12$ volt

Maximum bitrate (Shannon-Hartley theorem): $f=B \times{ }^{2} \log (1+S / N)$

3: Transport. Cables, etc.

Earlier communication used existing telephone technology Telephone landlines

- Cheap (because already exists)
- Very noisy (need for MoDem techniques)
- End of 'pay-per-call' idea (computers 24 hours connected)
- Limited bandwidth (telephone cut-off at 3 kHz ; in simple protocol this would be $6 \mathrm{~kb} / \mathrm{s}$)

3: Transport. Cables, etc.

ADSL

Fiberoptics: (Nyquist rate, $f=2 B$)
Telephone (electrical) signal has bandwidth of 3 kHz
Maximum bitrate: $2 \times 3 \mathrm{kHz}=6 \mathrm{~kb} / \mathrm{s}$
Fiberoptics (electromagnetic) have bandwidth of some $\mathrm{THz}\left(10^{12} \mathrm{~Hz}\right)$ Maximum bitrate: $2 \times 10^{12} \mathrm{~Hz}=2 \mathrm{~Tb} / \mathrm{s}$
About a billion times faster. With one fiberoptics cable everybody in the world can effectively make a telephone call at the same time.

3: Transport. Multiplexing

Multiplexing: sharing a single physical medium by various sources/destinations

Four ways of multiplexing:
SDM (Space division multiplexing)
Like audio cables. Many equipment connected to same amplifier.
Not really multiplexing.
TDM (Time-division multiplexing)
Sequencing 'packets' from each individual input stream, one after the other
FDM (Frequency-division multiplexing)
Sending signals in several distinct frequency ranges over that medium.
CDM (Code-division multiplexing)
Everybody talks at the same time (like GPS satellites)

3: Transport. Multiplexing

TDM (Time-division multiplexing)
Sequencing 'packets' from each individual input stream, one after the other

FDM (Frequency-division multiplexing)
Sending signals in several distinct frequency ranges over that medium.

[^0]: Examples:

 - TDT (Digital Terrestrial Television)
 - CD / DVD

[^1]: *: See lectures on Digital Systems

