Electronics

Peter Stallinga, UAlg 2011

MIEET. The levels of knowledge

Physics

	Electronics
Digital Electronics	

Actuators
Integrated Circuits
Systems

Digital Electronics

Micro Assembler

$$
\begin{gathered}
\text { Machine Language } \\
\text { Macro Assembler } \\
\text { High Level Programming Languages } \\
\text { Object-oriented Programming } \\
\text { Distributed Programming } \\
\text { Information Processing }
\end{gathered}
$$

Optics / EM Waves
Telecommunications
Internet

Control

Current - Voltage

Current is the passage of charge
Voltage is the potential energy

Potential energy storage and release

Power

$V \times I=P$

Ohm's Law

Linear relation between voltage (V) and current (I)

Ohm's Triangle

$$
\begin{aligned}
& R=V / I \\
& V=R \times I \\
& I=V / R
\end{aligned}
$$

Cover the variable you want to find and perform the resulting cal culation (Multiplication/Division) as indicated.

Resistance is the ability of an object to 'resist' the flow of current. Like 'friction'. Slows down the charge and ($I=n \times v$) reduces the current

The current is proportional to applied power divided by resistance

Power, current, voltage, resistance

$$
R=V / I \quad P=V \times I
$$

Symbols for electronic components

Measuring

Applying a voltage to a resistance
Measuring voltage and current.
For the measuring of current we have to open the circuit and insert the amperimeter

Notes:
The voltmeter has infinite resistance ($I=V / R=0$)
The current meter has zero resistance ($\mathrm{V}=\mathrm{IxR}=0$)

Measuring example

Example:
Voltmeter will indicate 5 V
Current meter will indicate 5 mA , because $(5 \mathrm{~V}) /(1 \mathrm{k} \Omega)=0.005$
The resistance is $R=(5 \mathrm{~V}) /(5 \mathrm{~mA})=1 \mathrm{k} \Omega$

Measuring with a multimeter

A multimeter can directly measure resistance (apply voltage, measure current and do the calculation)

A multimeter can also (still) measure current and voltage

Multimeter

\ldots and more ($\beta, \mathrm{C}, \mathrm{f}, \mathrm{AC} / \mathrm{DC}$)

Wrong connection

An amperimeter in the place of a voltmeter:

The current meter has zero resistance

$$
I=V / R=(5 \mathrm{~V}) /(0)=\infty
$$

A voltmeter in the place of an amperimeter:

The voltmeter has infinite resistance

$$
I=V / R=(5 \mathrm{~V}) /(\infty)=0
$$

You just nuked the multimeter!

Kirchhoff's Circuit Laws (KCL)

1: Kirchhoff's Law of Loops
Going back to same place (closed loop) means same energy potential (V)

$$
\Sigma \Delta V=0
$$

Walking from $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{d} \rightarrow \mathrm{a}$ We must return to same potential.

Kirchhoff's Circuit Laws (KCL)

2: Kirchhoff's Law of Junctions

$\sum \Delta I=0$

Series / parallel

What will be the effective resistance of two resistances 'in series'?

Calculate the current and use Ohm's Law $R=V / /$

Series / parallel

Kirchhoff: $I_{1}=I_{2}=I$

Series / parallel

Series / parallel

Kirchhoff: $I_{1}=I_{2}=I$
Ohm: $V=I \times R$
Kirchhoff: sum of $\Delta V=0$

$$
\Delta V_{1}=I \times R_{1}
$$

$$
\Delta V_{2}=I \times R_{2}
$$

Series / parallel

What will be the effective resistance of two resistances 'in parallel'?

Calculate the current and use Ohm's Law $R=V /$ I

Series / parallel

Kirchhoff's Law Loops:

$$
\begin{gathered}
V_{1}+(-V)=0: \\
V_{1}=V
\end{gathered}
$$

$$
\begin{gathered}
V_{2}+(-V)=0: \\
V_{2}=V
\end{gathered}
$$

Series / parallel

Ohm's Law:

Series / parallel

Ohm's Law:

$$
\begin{aligned}
& I_{1}=V / R_{1} \\
& I_{2}=V / R_{2}
\end{aligned}
$$

Kirchhoff's Junction Law:

$$
I=I_{1}+I_{2}=V / R_{1}+V / R_{2}
$$

Ohm's Law: $R=V / /=$
$\frac{V}{V / R_{1}+V / R_{2}}$

Parallel:

$$
=\left(1 / R_{1}+1 / R_{2}\right)^{-1}
$$

(only for case with two resistors!)

Voltage divider

What is the voltage halfway?

Voltage divider

What is the voltage halfway?

Resistances in series: $R=R_{1}+R_{2}$
$I=V / R=V /\left(R_{1}+R_{2}\right)$

Voltage divider

What is the voltage halfway?

Non-ohmic

Not everything behaves according to Ohm's Law
A capacitor is an element that has the capacity to store charge (instead of letting it pass).

The capacitance is by definition the amount of charge it can store per volt:

$$
\begin{aligned}
& C=Q / V \\
& V=Q / C \\
& Q=C \times V
\end{aligned}
$$

Current of a capacitor

If $Q=C \times V$, then: changes of voltage cause changes of stored charge:

$$
\Delta Q=C \times \Delta V
$$

How fast we do it matters

$$
\Delta Q / \Delta t=C \times \Delta V / \Delta t
$$

In the mathematical limit:

$$
\mathrm{dQ} / \mathrm{d} t=C \times \mathrm{d} V / \mathrm{d} t
$$

But, the left side is the definition of current

$$
I=C \times \mathrm{d} V / \mathrm{d} t
$$

Current in a capacitor is proportional to the speed of changes of the applied voltage

Capacitance example

Other components

Coil (inductor)

Diode

Transistor

Light-emitting diode (LED)

Other components

Fuses
Variable resistor /
Potentiometer

Car fuses

Connector

Other equipment

Variable voltage / current source

Signal source, $V(t)$

Oscilloscope: Visualize

Resistance color code

Never again forget this code!

