Electronics

Peter Stallinga, UAlg 2011

MIEET. The levels of knowledge

Current - Voltage

Current is the passage of charge Voltage is the potential energy

IALP 2011, Electronics, UALg, Peter Stallinga - 4/32

Ohm's Law

Linear relation between voltage (V) and current (I)

R = V / I

 $V = R \times I$

I = V / R

Ohm's Triangle

Cover the variable you want to find and perform the resulting calculation (Multiplication/Division) as indicated.

Resistance is the ability of an object to 'resist' the flow of current. Like 'friction'. Slows down the charge and $(I = n \times v)$ reduces the current

The current is proportional to applied power divided by resistance

IALP 2011, Electronics, UALg, Peter Stallinga - 5/32

Power, current, voltage, resistance

Symbols for electronic components

Applying a voltage to a resistance

Measuring voltage and current.

For the measuring of current we have to open the circuit and insert the amperimeter

Notes: The voltmeter has infinite resistance (I = V/R = 0) The current meter has zero resistance (V = IxR = 0)

Measuring example

Example:

Voltmeter will indicate 5 V Current meter will indicate 5 mA, because $(5 V)/(1 k\Omega) = 0.005$

The resistance is $R = (5 V)/(5 mA) = 1 k\Omega$

Measuring with a multimeter

A multimeter can directly measure resistance (apply voltage, measure current and do the calculation)

A multimeter can also (still) measure current and voltage

... and more (β , C, f, AC/DC)

Wrong connection

An amperimeter in the place of a voltmeter:

A voltmeter in the place of an amperimeter:

The current meter has zero resistance

 $I = V / R = (5 V)/(0) = \infty$

The voltmeter has infinite resistance

$$I = V / R = (5 V) / (\infty) = 0$$

You just nuked the multimeter!

IALP 2011, Electronics, UALg, Peter Stallinga - 12/32

Kirchhoff's Circuit Laws (KCL)

1: Kirchhoff's Law of Loops

Going back to same place (closed loop) means same energy potential (V)

$$\Sigma \Delta V = 0$$

Walking from $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$ We must return to same potential.

Kirchhoff's Circuit Laws (KCL)

2: Kirchhoff's Law of Junctions

$$\sum \Delta I = 0$$

"What goes in, must come out"

Cannot accumulate charge!

What will be the effective resistance of two resistances 'in series'?

Calculate the current and use Ohm's Law R = V / I

Kirchhoff: $I_1 = I_2 = I$

Kirchhoff: $I_1 = I_2 = I$ Ohm: $V = I \times R$ Kirchhoff: sum of $\Delta V = 0$

 $\Delta V_1 = I \times R_1$

 $\Delta V_2 = I \times R_2$

$$-V$$

+ $X R_1 + I X R_2 - V = 0$

Kirchhoff: $I_1 = I_2 = I$ Ohm: $V = I \times R$ Kirchhoff: sum of $\Delta V = 0$

 $\Delta V_1 = I \times R_1$

$$\Delta V_2 = I \times R_2$$

- V Series: $I \times R_1 + I \times R_2 - V = 0$ $R = V / I = R_1 + R_2$

IALP 2011, Electronics, UALg, Peter Stallinga - 18/32

What will be the effective resistance of two resistances 'in parallel'?

Calculate the current and use Ohm's Law R = V / I

Kirchhoff's Law Loops:

$$V_1 + (-V) = 0:$$

 $V_1 = V$

$$V_2 + (-V) = 0:$$

 $V_2 = V$

IALP 2011, Electronics, UALg, Peter Stallinga - 20/32

Ohm's Law:

$$I_1 = V / R_2$$

IALP 2011, Electronics, UALg, Peter Stallinga - 21/32

=

Ohm's Law:

$$I_1 = V / R_1$$

 $I_2 = V / R_2$

Kirchhoff's Junction Law:

$$I = I_1 + I_2 = V / R_1 + V / R_2$$

Ohm's Law:
$$R = V/I = \frac{V}{V/R_1 + V/R_2} = (1/R_1 + 1/R_2)^{-1}$$

 $\frac{R_1 R_2}{R_1 + R_2}$ (only for case with two resistors!)

Voltage divider

What is the voltage halfway?

Voltage divider

What is the voltage halfway?

Resistances in series: $R = R_1 + R_2$

 $I = V / R = V / (R_1 + R_2)$

Voltage divider

Not everything behaves according to Ohm's Law

A capacitor is an element that has the capacity to **store** charge (instead of letting it pass).

The capacitance is by definition the amount of charge it can store per volt:

$$C = Q/V$$
$$V = Q/C$$
$$Q = C \times V$$

If $Q = C \times V$, then: changes of voltage cause changes of stored charge:

 $\Delta Q = C \times \Delta V$

How fast we do it matters

 $\Delta Q / \Delta t = C \times \Delta V / \Delta t$

In the mathematical limit:

 $dQ/dt = C \times dV/dt$

But, the left side is the definition of current

 $I = C \times dV/dt$

Current in a capacitor is proportional to the speed of changes of the applied voltage

Capacitance example

Other components

Coil (inductor)

Diode

Transistor

Integrated circuit

Other components

Car fuses

IALP 2011, Electronics, UALg, Peter Stallinga - 30/32

Other equipment

Variable voltage / current source

Signal source, V(t)

Oscilloscope: Visualize V(t) IALP 2011, Electronics, UALg, Peter Stallinga - 31/32

Resistance color code

Never again forget this code!

IALP 2011, Electronics, UALg, Peter Stallinga - 32/32