


Figure 1: Relaxation Oscillator based on an ideal op-amp and two feedback loops, one containing a capacitor.

The Relaxation Oscillator shown in Figure 1 is based on periodic charging and discharging of the capacitor C.

- 1. Draw plots of the signals at V_n , V_p and V_{out} as a function of time.
- 2. Determine the oscillating frequency as a function of the parameters.

_ _ _ _ _

Consider a feedback amplifier for which the open-loop transfer function A(s) is given by

$$A(s) = \left(\frac{10}{1 + s/10^4}\right)^3$$

 $(s = j\omega)$. Let the feedback factor β be a constant independent of frequency. Find the frequency at which the phase shift is 180°. Then, show that the feedback amplifier will be stable if the feedback factor β is less than a critical value β_{cr} and unstable if $\beta \ge \beta_{cr}$, and find the value of β_{cr} . Phase margin: 0° or 45°. (Sedra & Smith, Ex. 8.10).