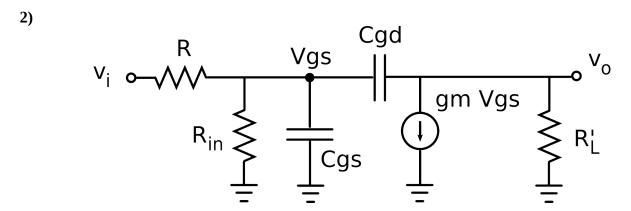
Electronics II

Frequency analysis

P. Stallinga

1)

A certain commercial amplifier has the following parameters


- Voltage gain: A = -100 V/V.
- Input resistance: $r_{\rm in} = 5 \text{ k}\Omega$.
- Output resistance: $r_{\text{out}} = 1 \text{ k}\Omega$.
- Capacitance between the input and output: $C_f = 10 \text{ pF}$.
- Capacitance between the input and the box (ground) and the output and the box (ground): $C_i = C_o = 10 \text{ pF}$.

Based on this amplifier the following circuit was designed

$$v_i \dots \xrightarrow{R_S} C_S$$
 C_S
 C_S
 C_S
 C_S
 C_S
 C_S
 C_S
 C_S

$$R_{\rm S} = 1 \text{ k}\Omega, R_{\rm L} = 3 \text{ k}\Omega, C_{\rm S} = C_{\rm L} = 10 \text{ }\mu\text{F}.$$

- a) Determine the mid-frequency gain of the complete circuit.
- b) Schematically draw Bode plots of the behavior of the circuit in terms of frequency.
- c) Determine the band-width of the circuit.

The figure above shows an equivalent circuit of an common-source FET amplifier. The input signal comes from a signal generator with an output resistance R. $R_{\rm in}$ represents the input resistance of the FET stage and is caused by the gate-bias resistances. $R_{\rm L}$ ' is the parallel equivalent resistance composed

of load R_L , drain resistance R_D and FET output resistance r_o . Capacitors C_{gs} and C_{gd} are internal capacitors of the FET.

 $R = 100 \text{ k}\Omega$, $R_{\text{in}} = 420 \text{ k}\Omega$, $C_{\text{gs}} = C_{\text{gd}} = 1 \text{ pF}$, $g_{\text{m}} = 4 \text{ mA/V}$, $R_{\text{L}}' = 3.33 \text{ k}\Omega$.

- a) Determine the mid-band gain, $A_v = v_0/v_i$.
- b) Determine the bandwidth of the circuit.