
Electronics II

Differential Pair FET

P. Stallinga

1:

The figure above shows a differential pair based on FETs with a current source of 2 mA that has an output resistance of 200 kΩ. The FET-parameters are: $K = \mu C_{ox}W/L = 2 \text{ mA/V}^2$ and $V_T = 0$. $R_D = 5 \text{ k}\Omega$.

- a) Calculate the bias point of the circuit.
- b) Calculate the common-mode gain, A_{cm} , the differential-mode gain A_{dm} , and the CMRR.
- c) Calculate the inpute resistance r_{in} and output resistance r_{out} of the circuit.

FET:

 $I_{\rm D} = K (V_{\rm GS} - V_{\rm T}) V_{\rm DS} (linear)$

 $I_{\rm D} = K/2 (V_{\rm GS}-V_{\rm T})^2$ (saturation)

2:

In the theoretical lectures we found a relation between the input signal difference (V_1 e V_2) and the output currents (I_{E1} e I_{E2}) for large signals (Ebers-Moll) for a differential pair based on bipolar transistors. The conclusion there was that the output signal is linear proportional to the input signal difference until about 3 times V_T , in other words about 75 mV.

Repeat the calculations for a differential based on FETs.

(Difficult! You can use electronics simulators such as SPICE or Workbench)