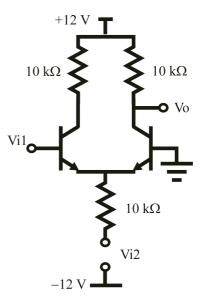
FS

Electrónica II

Exame de recurso

1 de Fevereiro 2007, 14-16 (Duração: 2 horas) Universidade do Algarve

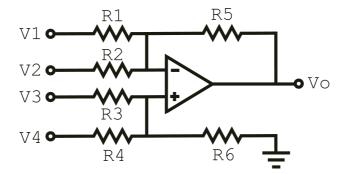

- Escreva o seu nome, nº de aluno e curso em todas as folhas que entregar.
- Não é permitido falar com os colegas durante o exame. Se o fizer, terá a prova anulada. Desligue o telemóvel.
- Caso opte por desistir, escreva "Desisto", assine e entregue a prova ao docente.
- O exame tem 6 perguntas e a cotação de cada aparece entre parêntesis.
- Faça letra legível.
- Boa sorte!

Todos os transístores bipolares têm $\beta = 100$ e $V_A = 200$. Esclarece sempre as respostas com cálculos e/ou figuras.

Pergunta 1 (3 valores)

Analise o circuito ao lado.

- a) Determine a polarização do circuito.
- b) Determine a relação entre os (pequenos) sinais de entrada (V_{i1} e V_{i2}) e o sinal de saída (V_{o}).

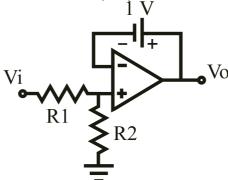


Pergunta 2 (3 valores)

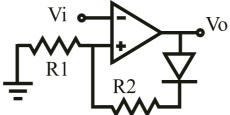
Explique como realimentação negativa não afecta o produto ganho x largura de banda (gain-bandwidth product GBP) do circuito.

Pergunta 3 (5 valores)

Analise o circuito abaixo baseado num ampop ideal e resistências.

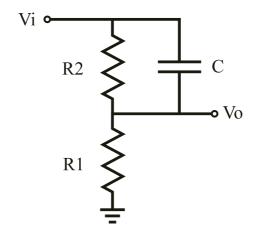

- a) Determine a relação entre o sinal de saída (V_0) e os sinais de entrada $(V_1...V_4)$.
- b) Assume todas as resistências igual a 1 k Ω . Desenhe uma maneira de limitar a largura de banda 10 Hz 100 kHz. Não esquece do possível efeito Miller.

Pergunta 4 (3 valores)


Um amplificador com ganho A tem uma resistência r_o . Qual será a resistência de saída do circuito quando o amplificador for usado com realimentação negativa com factor β . (Mostra os cálculos necessários para chegar a esta conclusão) Qual será a custa a pagar em termos dos outros parâmetros do circuito?

Pergunta 5 (3 valores)

a) Determine a relação entre V_i e V_o do circuito mostrado abaixo composto por um amp-op ideal, uma fonte de tensão ideal (1 V) e resistências ($R_1 = R_2 = 1 \text{ k}\Omega$).



b) Determine a relação entre V_i e V_o do circuito mostrado abaixo composto por um amp-op ideal, um díodo ideal (passa tudo para tensões positivas e nada para tensões negativas) e duas resistências usadas em realimentação positiva.

Pergunta 6 (3 valores)

Desenhe os gráficos Bode e Nyquist para a relação entre $V_{\rm o}$ e $V_{\rm i}$ no circuito mostrado abaixo. $R_{\rm 1}$ = 100 Ω , $R_{\rm 2}$ = 10 k Ω , C = 1 μF .

----- fim -----